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Abstract

INTERVAL GRAPHS, CHRONOLOGICAL ORDERINGS,
AND RELATED MATTERS

By Dale John Skrien
Chairperson of the Supervisory Committee: Professor Victor L. Klee
Department of Mathematics
If a finite, undirected graph is the intersection graph of a set

of intervals of the line, it is called an interval graph and the set

of intervals is called a representation of the graph. Let I(G) be the

set of all representations of an interval graph G in which all of the
endpoints of the intervals are distinct.
The set I(G) 1is divided into a finite number of equivalence

classes, called chronological orderings of G, which correspond to the

possible relative positions of the intervals in representations of the

graph. Consideration of these classes leads to new characterizations
of interval graphs, and to algorithms, with worst-case time-complexity
0(n3) where n {s the number of vertices of the graph, for solving
problems concerning special representations of interval graphs. Such
problems include: (1) determining whether a graph has a representation
jn which certain intervals are properly contained in [extend to the
left or right of, are completely to the left or right of] others, and
(2) determining whether a graph has a representation in which certain
intervals contain given points of the line.

These results are applied to proper interval graphs and proper

circular arc graphs, yielding new characterizations of each and

displaying an interesting relationship among proper interval graphs,




comparability graphs, triangulated graphs, and a set of graphs called
nested interval graphs.
The dissertation concludes with a characterization of interval

edge-graphs and a few NP-completeness results.
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CHAPTER 1: INTRODUCTION

The sutject of interval graphs has been studied for only a little
more than 20 years. Such graphs were first mentioned in 1957 by Hajos
[15], and were first studied by Benzer [2; 3] because of their
application to his work in molecular genetics. Since then, this
subject has been an active area of research. See Golumbic [12,
Chapters 1 and 8] and Roberts [26, pp. 111-140] for surveys of the many
applications of interval graphs that have arisen.

This dissertation is concerned with the possible relative
positions of the intervals in a representation of an interval graph.
The results presented here partially answer questions raised by Roberts
[26, pp. 118-120] concerning the application of interval graphs to

archaeological seriation or sequence dating.

1.1 Notation

Our notation for chapters 1-7 will follow that of Golumbic [12 or
13]. A graph (V, E) consists of a finite set V of vertices and an
irreflexive relation E on V. The elements of E are called
edges and can be thought of as ordered pairs of distinct vertices.
Therefore, our graphs have no loops or multiple edges. We define the

]

relation £ by letting ab e E' iff ba e E, and define

E=EuE'. A graph (V, E), or a set of edges E, 1is said to be

1. 2

undirected if E=E=E ', and is said to be oriented if En E
When we wish to emphasize that a graph is not necessarily oriented
or undirected, we will call it mixed.

A graph (V', E') 1is a subgraph of (V, E) if V'c V and

E' < E. (V', E') 1s called an induced subgraph if




E' = {ab:a,beV' and ab e E}.

Let VxV denote the irreflexive complete relation on V, i.e.,

VxV = {ab: a, beV and a # b}.

A graph (V, E) is complete if E = ViV, and a subgraph (V', E') of
a graph G 1is called a clique of 6 if (V', E') 1is complete.
An orientation of a graph (V, E), or of E, is a relation

1.t (here "+" will always

TcE suchthat TaT ' =@ and T+ 7T
denote the union of mutually disjoint sets or relations). Thus T
contains all ab ¢ E for which ba ¢ E, and contains ab or ba
(but not both) if {ab, ba} c E.

A relation T 1is said to be transitive if T2 ¢ T, where
T2 = {xy: x2, 2y ¢ T for some 2z},

A linear (or total) ordering T of a set V 1is a relation which
1

satisfies 1 . T, T=ViV, and Tn T =@. Thus a linear ordering
of V is just a transitive orientation of the complete graph on V.

A path in (V, E) consists of a sequence of distinct vertices
[vyseens Vk] such that v.v. ., e E for 1=1,..., k-1. Acycle (or
circuit) is a path [vy,..., vk] in which Vv € E- A chordless path
(or cycle) is one for which no other pairs of vertices are joined by

an edge. The graph induced by a chordless cycle of m vertices is
denoted by Cm. A graph without any cycles is called acyclic.

For a vertex xeV, define

N(x) (or N.(X)) = {yeV: y = x, yx e E, or xy e E}.
G
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3
This is the neighborhood of x. Let the open neighborhood ON(x) =

N(x)\{x}.

From here until the end of Chapter 7, except for the last section ;
of Chapter 4, we will reserve the letter E to be an undirected set
of edges, i.e., ab € E <=> ba ¢ E. Furthermore V will always be
denoted by {v],..., vn} and so n will henceforth be the cardinality
[vi of V.

When describing an algorithm, we will say that it has (worst-case)
complexity O(p(m)) for some function p, if there exists a constant

k > 0 such that, for all inputs of "size" m, the number of

computational steps the algorithm requires before it halts is at most

kp(m). The “size" of a graph (V, E) will usually be (V]| +|E| or
just |V], and the notion of step should be interpreted in terms of
the RAM model of random access computation with the uniform cost

criterion, as defined by Aho et al. [1, pp. 5-14].

1.2 Interval Graphs

An (undirected) graph G = (V, E) is called an interval graph
if there exists a set of closed intervals {I],..., In} of the real

line such that, for i # j,

vivjeE<=>Iinljf¢. P

The set of intervals is called an (interval) representation of G.

Thus G s an interval graph iff it has an interval representation.
There are several characterizations of interval graphs, three

of which will be described here in some detail because they will be
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used in the proofs of some of the results of this paper.

In our figures, vertices are drawn as small circles. A line with-
out an arrow connecting vertices a and b indicates that ab and
ba are edges. A line with an arrow pointing from a to b indicates
that ab is an edge.

Lekkerkerker and Boland first characterized interval graphs in

terms of forbidden subgraphs.
Theorem 1.1 (Lekkerkerker and Boland [24])

A graph (V, E) is an interval graph iff it does not contain an

induced subgraph which is I, II, IIIn, Ivn. Vn shown in Figure 1.1.

]
]

III , N points, n>4

LA R J
ees

IV, n+4 points, nx2 V,s n*5 points, nx1

Figure 1.1: Forbidden subgraphs. Note Illn is just Cn.
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To present the next characterization, we first give some
definitions. A clique is called maximal if it is not properly
contained in any other clique. If a graph G has exactly m distinct
maximal cliques {K],..., Km}, then we can construct the m x n
maximal clique-vertex incidence matrix M = (mij) by defining

Y if v, 1is a vertex of K
mij J i
0 otherwise.

Thus the rows correspond to the maximal cliques and the columns to the

vertices of V.
A matrix of O's and 1's 1is said to have the consecutive ones

property if the order of the rows can be permuted so that the 1

entries are arranged consecutively in each column (see Figure 1.2).

T 0 01 1100 1 0 00
A 1100 B 1 000 c 1100
0110 o110 0110
00 11 0 0 11 0 0 11

Figure 1.2: Consecutive ones property. Matrix A does not have
the consecutive ones property but matrix B does. Interchanging the
f1r;t tYO rows of B yields matrix C, which has consecutive 1's in
each column.

Theorem 1.2 (Fulkerson and Gross [9])

An undirected graph is an interval graph iff its maximal clique-vertex

incidence matrix has the consecutive ones property.
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The following construction shows the sufficiency half of the proof.
Suppose the rows of the matrix are arranged so that the 1's in each
column are consecutive. If the first 1 in column j 4s in the a-th
row and the last 1 in the b-th row, then represent vertex vj by the
interval Ij = [a, b]. Repeat this for every column. It is not hard
to see that {I;,..., In} is a representation of G. For examples of

this, see Figures1.3 and 6.1.

V2 ) Vi Vp V3 vy v5
‘ G S ERETC R
y V4 K01 1 01
5 Kz]0 0 1 11
The vertices of the
maximal cliques of G: The matrix M has consecutive ones and
. yields the following representation
Ky: dvpavpavg) of G: {I, = [1,1], I, = [1,2],
Kpt {v3.v4.v5) I = [2,3), 1, = [3,3],
Ko: {vo,v,,vc} -
3 2°73*78 15 = [1,3]}.

Figure 1.3: A representation of a graph.

A third characterization of interval graphs concerns the

compliementary graph gF = (v, E°) of G, where

€ = {ab: a, beV, a # b, and ab ¢ E}.

For intervals Ii and Ij, we write I1 < IJ to mean x <y

for all x ¢ I, and ye Ij.
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Theorem 1.3 (Gilmore and Hoffman [11])

An undirected graph G is an interval graph iff C4 is not an induced
subgraph of G and there exists a transitive orientation ¢ of &,
Furthermore, if this is the case, then G has a representation

c __
{Il”"’ In} such that vivj e T <=> Ii < Ij’

Some other concepts that arise are proper interval graphs (graphs

which have representations in which no interval is properly contained

in gnother) and unit interval graphs (graphs which have representations

consisting of unit intervals).

The following theorem shows the relationship between these

concepts.

Theorem 1.4 (Roberts [28])
Let G be an undirected graph. The following are equivalent:
(a) G 1is a proper interval graph;
(b) G 1is a unit interval graph;
(¢) 6 1is an interval graph which does not have K]’3 as an
induced subgraph {see Figure 1.4);
(d) G does not contain an induced subgraph which is K1’3.

I, (n 2 4), Ivz, or V] (see Figures 1.1 and 1.4).

Figure 1.4: K]’3.
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gfficient algorithms have been developed for recognizing these kinds of
graphs. Booth and Lueker [5; 6] in 1975 developed a data structure
called a PQ-tree for analyzing matrices of 0's and 1's for the
consecutive ones property. Their PQ-tree algorithm has (worst-case)
complexity O(m+n+e) for an m x n matrix with e nonzero entries.
Using this algorithm and Theorem 1.2, interval graphs can be recognized
in linear time. Furthermore, due to the following theorem, proper
(or unit) interval graphs can also be recognized in linear time.

The n x n augmented adjacency matrix M = (mij) of graph
(V, E) 1is given by

1 if wv,v.eE or i=3

m., = v
W 0 otherwise.

Theorem 1.5 (Roberts [23]; see also Booth [4, pp., 117-118])
An undirected graph is a proper interval graphs iff its augmented

adjacency matrix has the consecutive ones property.

Circular arc graphs form another class of intersection graphs

which have been studied. A graph (V, E) 1is a circular arc graph

if there exists a set {A],..., An} of arcs of a circle such that,

for i #j,

vivJ € E <= Al\,l n Aj 0.

Tucker [33] has characterized such graphs and has recently [32]
developed an algorithm of complexity O(|V|3) for recognizing them.

Proper circular arc graphs have also been characterized, both in terms
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of forbidden subgraphs [34], and in terms of their augmented adjacency
matrices [33], the latter characterization leading to a recognition
algorithm of complexity O(|V]+|E]). A characterization of unit

circular arc graphs in terms of forbidden subgraphs is also known [34].

1.3 Chapter Summaries

Chapters 2, 3, and 4 give three equivalent formulations of a

fundamental concept in this paper, that of a chronological ordering

of an interval graph. These are used to construct new characteriza-
tions of interval graphs which lead to fairly efficient algorithms for
recognizing whether a graph has certain chronological orderings.
Chapter 5 applies these results to proper interval graphs and proper
circular arc graphs. Chapter 6 discusses the problem of counting how
many chronological orderings a graph has. Chapter 7 is concerned with
representations which contain certain points. Chapter 8 characterizes
interval edge graphs and Chapter 9 provides some NP-completeness

results concerning the consecutive ones property of matrices.

1.4 An Archaeological Seriation Problem

We will use the following application of interval graphs to
motivate many of the results of this paper. This example is discussed
in Roberts [27, pp. 31-37; 26, pp. 118-120]. See also Kendall [18; 19]
and Golumbic [12].

While digging in an ancient graveyard, archaeologists often come

across quite a variety of styles of pottery or other artifacts. There

are many questions about these various styles to which they would like
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to have answers. For example, were two given styles ever in use at the

same time? Was there ever a time at which a certain style "a" was in
use but style "b" was not?

To try to answer these questions, let use first assume that:
Each style was in use during a single interval of time.

Under this assumption, there are essentially only three possible
relationships between two styles:
(1) Style u appeared after style v disappeared;
(2) Style u appeared after style v and disappeared before
style v;
(3) Style u appeared when style v was already in use and
disappeared after style v disappeared.
(Of course the role of u and v could be reversed.) These cases
correspond to the three possible relationships between two intervals

with distinct endpoints:

' ] 1 1
(1) Iu follows Iv. v u

. . . . . _1
(2') Iu is contained in Iv. u Iv
(3') I, overlaps I, to the right: Iv L

Thus a set of fintervals {Iu: u is a style of pottery} represents
the proper relationships in time between the various styles if:

case (1), (2), or (3) is true for the styles u and v <=> case
(1'), (2'), (3'), respectively, is true for the intervals I, and I .

Such a set of intervals is called a chronological representation of the

artifacts. We will consider the problem of trying to find a chronolog-




n

ical representation from the data obtained by the archaeologists.
Suppose two different styles of pottery appear in a common grave.
Then it is reasonable to assume that their intervals of use intersect.
If the collection of graves is quite extensive, it may also be reason-
able to assume the converse is true, i.e., if two Styles were ever in
use at the same time, then artifacts of each style appear in at Teast

one common grave. Thus we are assuming that:

Two styles appear in a common grave iff their intervals of

use intersect.

Now we form a graph Gp = (V, E) 1in which V 1is the set of styles of
pottery, and in which two distinct vertices are joined by an edge iff
those styles appear in a common grave. Then by our assumptions above,
GP must be an interval graph. Furthermore, any interval représenta-
tion in which all the endpoints of the intervals are distinct is a
possible chronological representation of the artifacts. Unfortunately,
unless GP consists of a single vertex, it has at least two representa-
tions which differ on containment, overlapping to the right, or
following (see Figure 1.5). We will call such representations

different chronological orderings of GP (the name comes from Roberts

(26, pp. 118-120]). Thus each chronological ordering of Gp is a
possible chronological representation of the artifacts.
Chronological orderings of a graph are studied in Chapters 2, 3,

and 4, where the term is more precisely defined.

AR e
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G has eight chronological
orderings, which are
represented below.

I )| 1 1
1: 1 3 2: 3 1
12 12
1 1 I 1
3. 1 3 . 3 1
I I
I I I I
5. L 3 6: 3 ——.|
I I
I 1 1 1
7: 3 | 8: 1 3
I I,

Figure 1.5: Chronological orderings of a graph.




CHAPTER 2: CHRONOLOGICAL ORDERINGS I

One way in which different chronological orderings can be
distinguished from each other is by means of the linear order (on the
line) of the endpoints of the intervals in a representation of a graph.
For this reason, we will restrict our attention to representations in
1(G), which is defined to be the set of all interval representations
of an undirected graph G in which every interval is non-empty and in
which the endpoints of the intervals are all distinct real numbers.

We remark that G 1is an interval graph iff 1(G) # 8.

Let Pn denote the set of 2n elements {2]. Rosenns Lo T

—

]!
Toseens rn} and let

0n = {(Pn, T): T is a linear ordering of Pn}.

We note that [0,] = (2n)! Also, let fﬂ = {850y 2} and

Rn = {r],..., rn}, and so Pn = Ln U Rn'

The set 0, 1s related to I(G) by means of the mapping
Fo' 1(G) » 0n defined as follows. Given a representation
1= {I],.... In} e 1(G), we associate the left [resp. right] endpoint
of I, with g [resp. rk] for k=1,..., n. The linear order of
the endpoints of the intervals of 1 on the real line induces a linear

order on P and hence we get an element of 0,- (See Figure 2.1.)

G 1 The linear order FG(I) is
vq I] = [1,4] represented by the following
I, = [2,6] sequential order:
v I, = [5,7
2 Vs 3 = [5.7] £1,85,77 L3sTp T3

Figure 2.1: An example of the mapping F

6
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Using FG‘ we construct an equivalence relation ~ on 1(G) by

defining
I~nIY <= FG(I) = FG(I')

for 1, I' € 1(G). We call an equivalence class under ~ a chronolog-

ical ordering of G, and call FG(I) €0 the linear ordering of P

associated with 1.

There are many natural questions about chronological orderings.
Given an undirected graph G, exactly which linear orders on Pn can
be associated with a representation of G? Given a partial order on
P,» Wwhen can it be extended to a linear order associated with a
representation ¢f G? Is there an efficient algorithm for extending
it? How many chronological orderings does a graph have? Most of these

questions will be answered here.

2.1 Main Results

Theorem 2.1
A graph G = (V, E) is an interval graph iff there exists (Pn’ T) €

0. with the following properties:

n
(a) PN T for {=1,..., n and

(b) for i # 3, vivJ € E <=> girj e T and eri e T.

Furthermore, i- this is the case, then (Pn’ T) is associated with a

representation of G.

Proof: (=>) Let I € I(G) such that FG(I) = (P, T). Clearly, we

must have &;r; e T for 1=1,...,n If vivj ¢ E, then, without
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loss of generality, I, <I.. Thus r. 2. ¢ T. Conversely, if

i j ity
rjli e T (or rizj e T), then Ij < I (or I1 < Ij). In particular,
Ii n IJ =P and so vivJ ¢ E.

(<=) Let A(x) = {yePn: yx € T} for each x ¢ Pn. We define a

representation I = {Il""’ In} of G as follows: Let
L= DA, [AGe) (], for i =1,...,

Because of conditions (a) and (b), it is easy to see that 1 represents

G and that (P, T) = Fe(1). D

Given G = (v, E) and (Pn, T) € On’ this theorem provides a way
of testing in 0(lVl3) steps whether (P, T) 1is associated with a
representation of G. It is natural to ask whether this characteriza-
tion can be used to construct a recognition algorithm for interval
graphs. Such an algorithm will shortly be constructed, but it will be
useful to first put the problem in a more general framework. This will
enable the algorithm to solve problems which are beyond the ability of
the more efficient recognition algorithms that exist for interval
graphs.

Let us return to the example of archaeological seriation. As
before, suppose that a chronological representation of the artifacts
is an interval representation of Gp. Now, Tet us suppose that we have
some extra information on the relative positions of the intervals of
use of the artifacts, in the form of knowledge as to which of various
endpoints of the intervals are to the left or right of certain other

endpoints. For example, suppose it is known, by some other records,
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: that style i disappeared before style j appeared. Or suppose it is
i known that style i appeared after style Jj, but it is not known
which style disappeared first. We want our representation of Gp to
contain this information.

This amounts to putting some restrictions on the linear orders on

Ph to be associated with the representation of Gp. For example,

knowing that style i appeared after sty]e‘ j disappeared means that

B T —"

we are interested only in those representations of Gp whose

associated linear order T on Pn satisfies rjzi eT.

: This raises the following question. We remark that our problems

are presented in the format described by Garey and Johnson [10, p. 4].

Sl e e o etk s e

A problem is a general question to be answered, which is asked of a
particular class of objects usually containing several unspecified
" parameters. An instance is obtained by assigning specific numerical

values to the parameters. ;

Problem 2.2
Instance: Graphs G = (V, E) and (P, S).
Question: Does there exist a linear order T on Pn such that

ScT and (P, T) e Fg(1(G))?

We shall construct an alogrithm of complexity 0(lv|3) that ;
solves this problem and constructs the linear order T (if one exists).
We first consider the case where S = @.

In the following algorithm, an undirected graph G(V, E) is the
input. The output is either "FLAG = 1", which means G is not an
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interval graph, or "FLAG = 0" and a linear order T of P, such that
(Pn,T) € FG(I(G)).

A1l our algorithms are written in Pidgin ALGOL as described by Aho
et al. [1, pp. 33-39].

Algorithm 2.3

begin. v

initialize: T« {g;r,: 1 =1,...,n}u {zirj, zjri: Vi¥y € Er; (1)
if E© cannot be transitively oriented (2)

then write "FLAG = 1" and halt

. . c
else construct such an orientation T7;

c
for all wyvy e T do T« Tu {28, 23vy, Fity, myrgly (3)
for all v,v; e ¢ do ' (4)
% for all k such that v,y e E and ViYj e E do (5)
T<-Tu{rr'k,2l},
F for all ity € Ry % RAMT v T ) with < j do (6)
: T«Tu {rirj};
{ for all 2,85 ¢ Lnan\(TuT‘]) with i<j§ do (7)

T«Tu {zinj};
10 (8)

0" and T

if TaT) #@ then write "FLAG

else write "FLAG

end

Theorem 2.4

Algorithm 2.3 solves Problem 2.2 in the case where S =p.
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Proof: Suppose G 1is not an interval graph. Then by Theorem 1.3,
either E® is not transitively orientable or G contains the induced
subgraph C4. In the former case, the algorithm will output "FLAG = 1"

from line (2). For the latter case, consider:

Lemma 2.4.1 1f G° has a transitive orientation Tc, then Algorithm

2.3 writes "FLAG = 1" <=> G contains C4 as an induced subgraph.

Proof of Lemma 2.4.1: Suppose G contains C4 with vertices Vis v2, :

V3 Vg- (See Figure 2.2. We draw a dotted line with an arrow from

vertex a to vertex b to indicate that ab ¢ Tc.)

Figure 2.2: Sufficiency inlemma 2.4.1,

Without loss of generality, Vivy € ¢ and VoV, € T°. When line (4)

considers Viv3 € Tc, then line (5) places {r]rz} in T. But when
line (4) is considering VoV, € Tc. then line (5) places {rzr]} in
T. Hence "FLAG = 1" will be written when line (8) is impiemented.

Conversely, suppose "FLAG = 1" is the output. Then some XYy

S RS

and Yy X; were both added to T, where x,y ¢ {&, r}. It is easy to ;
see that this must have occurred in line (4) and (5), and therefore

that x =y=r or x=y =212, Wewill consider only the case in

which x = y = r; the second follows similarly. Suppose r.r, was

e
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added to T when viv; € ¢ was being considered in line (4), and
rri was added to T when ViV, € ¢ was being considered in line

(4) (see Figure 2.3).

Figure 2.3: Necessity in Lemma 2.4.1.

. c c
If vlvj ¢ E, then either vlvj eT™ or vjvl e T. But each case
contradicts the transitivity of TS, Thus vzvj ¢ E and hence
{Vi’ Vo vj, Vz} induces C4 in G. This completes the proof of

Lemma 2.4.1.

Now suppose G 1is an interval graph. We must show that the out-
put is "FLAG = 0" and T, and that (Pn’ T) € FG(I(G)). 8y Theorem
1.3, E® has a transitive orientation and G does not contain C4
as an induced subgraph. Hence by Lemma 2.4.1, "FLAG = 0" and T are
the output. By steps (1) and (3), the conditions of Theorem 2.1 are
satisfied, so all that remains to be shown is that T is a linear
order on Pn. To accomplish this, we need only show that T2 cT.

Let T' denote the set T just prior to the implementation of

line (6).

A0 S0 i ! g
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Lemma 2.4.2 If G is an interval graph, then T' 1is transitive and

each component of (Pn, (M) is a complete graph.

Proof of Lemma 2.4.2: We will say that (triangle) BV, Vs forces
] ] . c
riry € T' and zkz. e T' if vivj e 17, Vivy € £, vkvj e £ and

hence lines (3), (4), and (5) add {rirk’ gkgj} to T'. The proof

will be split into eight cases, each of which has some subcases. We
use the symbol "(=><=)" to denote a contradiction, and we use the fact

C . . ' '
that vivj e T° if Vivj ¢ E and either rirj eT' or Eizj €7

(due to line (3)).

CASE 1: Assume Pirys T3k € T'. We want to show that r.r e T'.

¢ E. Then r.r  must have been
J Jk

Subcase 1: Vivj e E, ViV, € £, ViV
: c
forced by some Avjvkv2 with v.v e T- and VY, € £

je
(see Figure 2.4).

Figure 2.4: Case 1, Subcase 1.

' (=><=). Hence
If v,v, ¢ E, then Avjvivl forces rJ.ri € T' (=><=)

g ¢ ¢ and
ViV, ¢ £ and by the transitivity of T, we see that (AR

s r.r.el'.
SO AViVV) force iTk

c
Subcase 2: vivj e E, vjvk € E, vivkt £. Then ViV € T or else

Avkvjvi forces r r. e T'. Hence by line (3), ryr e T

k' Jj
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PEEDRUE

Subcase 3: Vivj ¢ E, vJ.vk ¢ E, ViV € E. This cannot happen, because,

. c
if so, then vjvk € T- and hence Avjvivk forces ?

D bademgmakit

' =se=
riry € T' (=><=).

Subcase 4: vivj ¢ E, ViV e E, vJ.vk e E. Then rjrk e T' must have
. c
been forced by some Avjvkv2 with vjvl e T and

cpsos c o
ViV, € E. By the transitivity of T, Vivj’ Vjvz eT

[ )
viv2 e T°, Hence Avivkvl forces PN T'.

. c c
Subcase 5: v].vj ¢ E, Vjvk ¢ E. Then vivj e T- and Vjvk e T, so

by transitivity of TC, Vivy € T¢ and hence line (3) gives

rir € T'.
Subcase 6: Vivj ¢ E, Vjvk e E, ViVi ¢ E or v‘.v‘j e E, Vjvk ¢ E,
A ¢ E. By the transitivity of Tc, vivj e T¢ =»

ViV € 1€ or vJ.vk e T¢ => ViV € TS, Hence by line (3),

rirk e T'.

CASE 2 1izj’ ljlk ¢ T'. This is proven just like Case 1.
] L3 ] = c
CASE 3 Pilys 258y € T'. First note that ity € T' = Vivy € T
=> zizj e T'. If 1=k, then zkzj = zizj e T' (=><=).
Thus i, j, k are distinct. Note that rinj e 7' =
c
vivj e T .
Subcase 1: vJ.vk ¢ E. Then vjvk € 1° 0 by the transitivity of TC,

we get ViV € T¢ and hence rigy € T' by line (3).
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Subcase 2: vJ.vk ek, AN ¢ E. Again by the transitivity of Tc, we

C = [ '
get Vivj eT ViV e T and hence Tt € T'.

Subcase 3: ViV € £ and Vivy € E. This cannot happen because, other-

wise aviv v, forces 285 € T (=><=).

. [ C
ASE 4: =2 .r., rjzk e T'. Note that vjvk ¢ £ and vJ.vk e T .

If i=j, then vivk = vjvk‘e Tc, so by line (3), we qget

2,2, € T'. Now assume i, j, k are distinct.

Subcase 1: ViV t E. Then ViV e T¢ so by the transitivity of TS,

C '
we get ViV € T- and hence zizk e T'.

Subcase 2: Vivj € E, vive ¢ E. Then by the transitivity of 1%,

C '
ViV € T~ and hence 211k eT'.

Subcase 3: Vivj e &, ViV, € £E. Then Avjvivk forces L2 € T'.

ASE 5: 23250 2Fy € T'. If i=k, then g,;r T by line

(1). If j =k and vivj e E, then o,r e T' by

i . c
line (1). If j =k and ViV ¢ E, then ViVy € T

and so by line (3) we get P lirj e T'. Now assume

i, j, k are distinct.

Subcase 1: Vi¥y ¢ E, ViV ¢ E. Then by the transitivity of 1%,

c _ C : '
ViVis V.V, € T = A T, so by line (3), BT € T'.

e sus ¢
Subcase 2: Vivj e E, ViV ¢ B vyvy ¢ E. By the transitivity of T°,

€ T1¢ so ‘irk e T'.

¢
vjvk e T => ik




Subcase 3:

Subcase 4:

Subcase 5:

CASE 6:

Subcase 1:

Subcase 2:

Subcase 3:

CASE 7:

23
Vivj ¢ E, vJ.vk e E, ViV ¢ E. By the transitivity of Tc,
vivj e T¢ => ViV € 7¢ so 1, T e T
ViV, € E. Then by (1), we get i1y € T'.
ViV ¢t E, vy v e E, VJVk e E. Then 2,0y € T', or other-

"= c
wise, k i € T > vkvi e T° and then Avkvjvi forces

ljli e T' (=><=).
' C
rlrj, rJzk e T'. Note that vJ.vk ¢ E and vjvk e T,
If i=k, then v.v. =v.v, e TS => r.r. ¢ T' (=><=).

i Jk J i
Hence i, j, k are distinct.

Vivj ¢ E. Then by the transitivity of Tc, Vivp € 1¢ and
hence ri%, € T' by line (3).

v.v. ¢ E and ViVi ¢ E. Then by the transitivity of TC,

'IVJ
ViV, € T¢ and hence rit e T' by line (3).

v,‘vJ ¢ b, v, Vi € E. This cannot happen because, if so,

then Avjvivk forces rjri e T' (=><=).

i
j and vivk e E, then zirk eT

2 r , T rk eT'. If 1=k, then &, ik T L T

by 11ne (V). If i
by line (1). If i

"
n

j and ViVk ¢ E, then (AN

vJvk e T¢ so =, T € T' by line (3). Now assume i, J,

k distinct.
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Subcase 1: ViV € E. Then 2Py € T' by line “1).

Subcase 2: wv,v, ¢ E and (Vjvk ¢ b or ViV ¢ £ or both). Then }
by the transitivity of Tc, we get ViV € ¢ and so

2.7 € T' by line (3).

Subcase 3: v,v, ¢ E, ViV € E, v.v. ¢ E. Then ViV € T¢ and hence

1]

1 . . C
zirk e T' since, if Vkvi e T-, then Avkvjvi forces

l"kr‘j e T' (=><=).

' c
CASE 8: r}zJ, erk € T'. Note that vivi ¢ E and vivj e T .

If j =k, then ViV T v1vJ € so r.r e T'.

So assume i, j, k distinct.

J
1€

Subcase 1: ViVt E or Vjvk ¢ £ or both. Then the transitivity

c ¢ '
of T~ forces Vivk e T~ and so rirk e T'.

Subcase 2: v, Vi € E, ViVy € E. Then Avivkvj forces ik eT'.

This shows that T* 1is transitive. Now let us prove that the
components of (P , (T')) are cliques.

Note that each component's vertices are totally contaihed in Rn
or totally contained in L,» by lines (1) and (3). The two cases are
similar, so we will consider only the first. Suppose rlrJ, r. rk €
(TT)C. Since these edges and their inverses were not added to T'
before line (6), it must be true that v’vJ. ViVie ViV € E. Now
suppose r.r, ¢ (——)c Then without loss of generality, r. Tk € T'.

Thus there must be a triangle BV v, which forced riT € T' (see




25

Figure 2.5).

Figure 2.5: i : .
g The vertices Vis vJ, Vir Vg-

If Vjvz e E, then Avivjvz forced rirj e T' (=><=). But if

v.vl ¢ E, then the transitivity of 1€ forced vjvz € 1€ and then

' =><= T\C i i
AYijvz forced rjrk e T' (=><=). Hence riTe e (T')~, This suffices
to show that all the components of (Pn, (T)¢) in R, are cliques.

This completes the proof of Lemma 2.4.2.

Now to finish the proof of Theorem 2.4, we note that, since T
is transitive, any linear order T" (for example, the one given in
lines (6) and (7)) can be given to the vertices in each of the cliques

of (Pn, (T)®) and T' + T" will form a linear order on P . 0

Now let us return to Problem 2.2 and consider the case where

(v, E) and

S #@. The-fellewing algorithm accepts as input G

ScPy%P.. The output, as before,is either "FLAG = 1", indicating

there is no solution, or "FLAG = 0" and T, which is the desired

linear order.
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Algorithm 2.5
begin

initialize: T« @ T« {y;r:i=1...,nbv
{z. rJ, 23?’1 ]VJ € E}; (])
for each x].yj € S such that vivj et or i=j do
TeT v {xiyj}'. (2)
comment: x, y € {r, &};
for each x;y; e S such that i#J and vyv, ¢ £ do (3)
T«T L., s s
«Tu {r it r1rJ L. eJ 2 r I
for each rir; e S do (4)
for each k #Jj such that v,v, e E, vy, e b, Vivi ¢ E do (3)
T«Tu {rkr s 2k23. rli’ L 5 3
for each 2,8, ¢S do (6)
for each k # i such that v,vy e E, ViV € E, vivy ¢ E do (7)

T<«Tu{r, rk, 21 K’ r. lk ‘ k}

for each iy € T such that v, v ¢ £ do 1€ «1¢y {v, vy b (8)

if there exists a transitive or1entat1on of E® that conta1ns T

then TC « such an orientation (9)
else write "FLAG = 1" and halt; (10)
c .
for each v;vy e To do T«Tu iRy, Py 25740 rizj}, (1)
for each Vivj € ' do

for all k such that v,v, ek and ViYy € E do
T«Turr, 1kg,}; (12)
if (Pn’ T) s not acyclic then write "FLAG = 1" and halt (13)

else T « a linear ordering of P, that contains T; (14)
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write "FLAG = 0" and T (15)

end

Theorem 2.6
Algorithm 2.5 solves Problem 2.2.

Proof: Suppose “FLAG = 0" is written as part of the output. Then T
is a linear order on Pn by line (14) and, by lines (2) and (3), it
contains S. By lines (1) and (11) it satisfies the conditions in |
Theorem 2.1, so (Pn, T) € FG(I(G)) as desired. ;

Suppose, conversely, that G is an interval graph and there

exists an extension T of S such that (Pn, T) € FG(I(G)). Then

we claim that Algorithm 2.5 will produce such an extension. We show

first that the else clause in line (10) is not implemented and that

1

TaT =@ prior to the implementation of line (13).

Note that any linear order T' which extends S and for which
(Pn, T') € FG(I(G)) must contain all of the edges added to T in
lines (1) - (7), as the following arguments show. This is obvious
for lines (1) and (2). For line (3), if an endpoint of I. 1is to

J

the right of an endpoint of Ii and I. n Ii =@, then Ij is

J
completely to the right of I.. For lines (4) and (5), we note that
if {Iys.... LYe 1(G) and the right endpoint of I, is to the left

of the right endpoint of Ij, then any interval Ik which intersects

Ii but not 1j must be completely to the left of Ij. Lines (6) and
1

(7) follow similarly to (4) and (5). Therefore T n T =@ prior

to the implementation of line (8).

e Y A
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Furthermore, G must have a transitive orientation which
includes T¢ as defined in line (8) by Theorem 1.3. Thus line (9)
will not cause "FLAG = 1" to be written.

Let X5 be one of the edges added to T in line (11) when
vivj e T° i, under consideration and suppose that iji had already
been added to T. Then iji could only have been added when lines
(3)-(7) were being implemented. But any of these possibilities would
have caused Vjvi to be added to T® in line (8), contradicting
Vivj e 7. Hence after line (11) is implemented, T n 1 - 8.

We next consider step (12). Suppose that, when some v,ivj e T¢

is under consideration, there is some Vi with vivk e E and

vjvk ¢ £ for which "Tioor ijzk has already been added to T.

Consider the case in which rkri e T; the case where zjzk e T is k
similar. Then rery must have been added to T in line (2) or an
earlier loop of line (12). If P was added to T in line (2),

then lines {(4), (5), and (8) would have caused Vv to be in 1%,

iV
contradicting vivj e T°. Thus " must have been added to T in
c

an earlier loop of line (12), say, when VY, € T~ was under

consideration. Then ViV, € E (see Figure 2.6).

Figure 2.6: The vertices v, Vj’ Vio Ve
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If Vzvj ¢ E, then we obtain a contradiction of the transitivity of

c c c
T- regardless of whether vjv2 e T or VeVj € T°. Thus ngj ¢ E,

and so {Vi’ Vieo Vj’ Vz} induces C4 in G, contradicting G's

being an interval graph. Thus re’s could not have been added to T

and so T n T'] = @ prior to the implementation of line (13).
A1l that remains is to show that (Pn’ T) is acyclic. Let

T' denote the set of edges added to T in lines (1), (11), and
(12). By lLemma 2.4.2 of Theorem 2.4, T' 1is transitive and
(Pn, (T)¢) has connected components consisting of cliques.
Therefore, since T n T'] = @, the set T being tested for
cycles in line (13) can be partitioned into T' + K, where K
is a set of edges from the cliques of (Pn, (TT)C). This latter
set of edges must have been added to T 1in line (2) of the
algorithm and so K< S, which means that (Pn, K) is acyclic.

When combined with the transitivity of T', this implies that

(Pn, T) = (Pn, T' + K) is acyclic, as the following argument shows.

Suppose (Pn, T) has cycles. Let C = [x], Xpseens xk],

k > 3, be a shortest cycle in (Pn, T). Without loss of generality,

X)Xy € K, XpX3 € T'. Now X1%5 ¢ (TS since the components of

(Pn. (TT)C)are cliques. Therefore, XyX3 € T or X3Xy € T' and so,

since T' 1is transitive, XyX3 € T'. But now [x], Xgseo-

shorter cycle in (Pn, T), a contradiction.

Therefore (Pn’ T) is acyclic, and the theorem is proved. []

. xk] is a

kIR i o i 0 e
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An implementation of_line (9) is discussed in Chapter 4, where
it is shown that it can be done in O(|V|3) steps. Lines (13) and
(14) can be implemented to run in O(|V] + |T|) steps by a
"topological sorting” procedure (see Golumbic [12] or Knuth [21,

vol. 1, pp. 258-265]). Thus it can readily be seen that Algorithm 2.5

has worst-case complexity 0(]V]3).

2.2 Graphs with Fuzzy Edges

Let us return to the example of archaeological seriation.
Consider the case where the graph Gp turns out not to be an interval
graph, thus indicating a flaw in one or more of the bu.ic assumptions.
The problem could be due to the fact that, for certain pairs of
vertices, the data suggesting the inclusion {or omission) of an edge
between them is insufficiently compelling. For this reason, some
edges may have been added (or left out) that should be left out (or

added).
This possibility leads to the following problem. (In this form,

A b i it sl il bt o

those edges for which the information is "fuzzy" are denoted by EZ.)

Problem 2.7

Instance: Graph G = (V, E] + Ez). with undirected sets of edges

E] and EZ'

S Y S N .
e s S e gaan

Question: Does there exist an undirected set E of edges such that

E] cEcEy+ Ez and (V, E) 1is an interval graph?
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This question is also relevant for Seymour Benzer's experiment in
molecular genetics [2; 3]. He collected data indicating whether
various connected regions of a gene intersect each other, and he hoped
this data would support his claim that the gene is linear in structure.
If we consider each region as a vertex, and connect two vertices with
an edge iff the two regions intersect, then the resulting graph must
be an interval graph if Benzer's hypothesis is correct.

For one set of 19 regions, Benzer tested all pairs for inter-
section and he actually obtained an interval graph, which supported
his hypothesis.

However, for a set of 145 regions, he was not able to test all
pairs to see if they intersect. In this case, he was in the situation
described in Problem 2.7 in which E2 connects the pairs Benzer was
not able to test. In his case, the answer to the question in Problem
2.7 was yes; that is, he was able to find an interval graph as
desired, but he did not indicate a method with which we can always
efficiently answer the question.

It is not known if there is an efficient means of solving Problem
2.7. 1t is very closely related to some known NP-complete problems
(see Garey and Johnson [10, Problem GT35]), which indicates that the
problem might be quite hard to solve. However, a special case of the
problem can be solved by an algorithm of complexity 0(]v12) using
the methods developed in this chapter.

Consider once again the example of archaeological seriation.

Suppose that, for each pair of intervals which the archaeologists are

e S-S A s Aicai iﬂliiiiﬂiﬂﬂ===ﬂiiki
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certain do not intersect, the intervals are so far apart that it can
be determined which of the two is older and which is more recent.

We formulate this special case as follows:

Problem 2.8

Instance: Graph G = (V, E; 4 EZ) with undirected sets of edges E,

and Ez, and an orijentation S of all the edges in G<.

Question: Does there exist a set [ = {11...., In} of closed, non-
empty intervals with all endpoints distinct, such that
(a) vivj € E] => Ii n Ij # P, and
(b) wv.v. e S = Ii < 1.7

1) J
The next theorem characterizes those instances of Problem 2.8 for
which the answer is yes. Furthermore it provides a test with 0(]v12)
steps for solving the problem.
Define T ¢ Pn X Pn as follows:
1= {zirj, zjri: Vivj € E]} U {2iri: i=1,..., n}

v {ziz., r.r., zir., riz

V.V, S}.
AR B At B ivj e

it Y

Theorem 2.9

There exists a set of intervals as desired in Problem 2.8 iff (Pn’ T

is acyclic.

Proof: I1f there is such a set of intervals, then such a representation

will induce a linear order on Pn which clearly contains T. Thus T
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nust be acyclic.
Conversely, if (Pn, T) is acyclic, T can be extended to a
linear order. This linear order is associated with a set of intervals

which by Theorem 2.1 has the desired properties. []

Note that this situation could be generalized slightly by allow-
ing some extra restrictions on the zi's and ri's in an instance
of the prohlem. This could easily be handled by including them in T,
in which case Theorem 2.9 would still hold.

A topological sorting algorithm applied to (Pn’ T} will deter-
mine if it is acylic, and if so, produce a linear extension in
O(|v] + |T|) steps.

As is often the case, not only would it be nice to know when a
solution exists, it would also be nice to know how many such solutions
there are.

Enumeration of solutions to Problem 2.2 in the special case where
S =P is discussed in Chapter 7. The general case is more
complicated, and the author knows of no efficient enumeration scheme
for it.

For Problem 2.8, the number of solutions is just the number of

linear extensions of T. This subject will be discussed in Chapter 4.




CHAPTER 3: CHRONOLOGICAL ORDERINGS 11

It may have become clear in Chapter 2 that to completely describe
a chronological ordering of a graph, all that is needed is the linear
order of the right endpoints and the linear order of the left endpoints
of the intervals. This idea is explored in this chapter.

Recall that Rn = {r],..., rn} and Ln = {1],..., zn}

(P.=R ul.). Let

R = {(R , TR): TR is a linear order on Rn)

and

L, = {(Ln, TL): TL is a linear order on L.}

As described in Chapter 2, if, for any representation I = {11,...,
I}« 1(G), the left [resp. right] endpoint of interval I, is
associated with 25 [resp. ri], then the linear order of the endpoints
on the real line induces a linear order Tp on Rn and a linear
order TL on Ln‘ This defines a mapping FéL: 1(G) + Rn x L. TR
and T, are said to be associated with 1.

L
The following theorem is the analog of Theorem 2.1,

Theorem 3.1

A graph G = (V, E) 1is an interval graph iff there exist linear orders

TR on Rn and TL on Ln with the following properties: For all
i, j, and k,

(a) riry e TR and vy € N(vi)\N(vj) => lklj € TL' and

(b) ‘izj € TL and Vi € N(vj)\N(vi) = rir e TR.

etk it _—
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Furthermore, if this is the case, then TR and TL are associated

with some representation of G.

Proof: Let 1 I(6), I ={I;,..., I }. It is easy to see that the
linear orders TR and TL associated with I satisfy conditions (a)
and (b). If interval Ij extends to the right of Ii and Ik inter-
sects Ii but not Ij, then Ik must extend to the left of Ij.
Also, if I1 extends to the left of Ij and Ik intersects Ij but
not Ii’ then Ik must extend to the right of Ii'
For the converse, assume there exist linear orders TR and TL

with properties (a) and (b).

Lemma 3.1.1: If Vivj ¢E and i #Jj, then r.r. e TR <=> 2.0 e TL.

1J J

Proof of Lemma 3.1.1: Let vivj ¢ E and i # j. Assume rirj € TR.

Then v, e N(vi)\N(vj) so by (a), we have 2325 € TL' If Qilj € TL,

then since vy € N(vj)\N(vi), property (b) gives rirs e T

Lemma 3.1.2: G does not contain C4 as an induced subgraph.

Proof of Lemma 3.1.2: Suppose [v], Vos V3, v4] is a chordless cycle

in G. MWithout loss of generality, we can assume that ror, e TR’

d.1. s b
Loty € TL’ rr3 € TR’ Li4q € TL by Lemma 3.1.1. Furthermore, by

symmetry, we can assume that rir, e Tr (see Figure 3.1).

I e AR KA, oo i ot Y L i
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Figure 3.1: Lemma 3.1.2.

But now ryr, e TR and v, € N(v])\N(vz), so by property (a)

2412 € TL. But this contradicts 2224 € TL.

Lemma 3.1.3: Let T¢ = {Vivj £ E:rur. € TR}. Then T¢ is a transi-

1]
tive orientation of Gc.

Proof of Lemma 3.1.3: Note by Lemma 3.1.1 that 7°¢ = {Vivj ¢ E:

c
Eizj € TL}. Now let vivj, vJ.vk e T°. Then rirj, rjrk € TR and

Eigj’ ljlk € TL. Hence by linearity of TR and TL’ we have L

c .
TR and lizk € TL. Thus, ViV € T if ViV ¢ E. Assume ViV € E.
Then since rirj € TR and vy € N(vi)\N(vj). property (a) implies

that zkzj € TL’ a contradiction. Hence ViVi ¢ E and the proof is

complete.

Now by Lemmas 3.1.2 and 3.1.3 and Theorem 1.3, G must be an
interval graph. We next show that TR and TL are associated with a
representation in 1(G).

Define a relation T on Pn by
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; T= TR + TL + {ziri: i=1l,...,n} + {zirj. ‘j'i’ vivJ ¢ E} ;
{ ) i
; + (zirj, ri‘j‘ Viv; tE and riry € TR}.
: Lemma 3.1.4: T 1is a linear order on Pn which is associated with a

chronological ordering of G.

Proof of Lemma 3.1.4: By Theorem 2.1, we are done once we have shown

that T is a Tinear order. We need only check transitivity. Each of

eight cases will be considered. We note, first, the following property

of T which follows from the definitions of T and TS:
L (*) If vivj ¢ E, then the following are equivalent:

c
(1) rirj eT (3) ri’j €T (5) vivj eT.
(2) zizj eT (4) zirj T
CASE 1: rirj, rJ.rk e T. Then rity € T by the transitivity of
T TR.
E CASE 2 ‘ilj’ zjzk e T. Then L8, € T by the transitivity of
- TL.
CASE 3. ‘i’j’ Ljrk e T. Assume r.t: eT. Then v v, ¢ E and

L T by (*). If vjvk ¢ E, then by property (b), ;l
we must have rir, e T (=><=). Hence viVi ¢ E, so by

(*), Vivi € 1¢. Ssince by (*), AP 1, Lemma 3.1.3

says that Vyvy e T¢. Hence by (*), ‘j'i e T (=>¢=),

Thus our assumption that by € T 1s false and so

43r, ¢ T.
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CASE 4: x| Pis iy € T. The proof that ¢.r, €T is almost
1dent1ca1 to the proof of Case 3.
CASE 5: r.r., ity € T. By the definition of T, Vivi ¢t

1d
c
and so Vjvk e T, If ViV € E, then property (a)

gives ¢ £, contradicting ViV € T¢ and (*).

Thus Vivi ¢ E. If vivj e £, then by the transitivity

of 1% wv.v, ¢ T and hence r.2, € T by (*). If
ik iTk
vj ¢ £, then vivj e T° by (*), and hence the

transitivity of T¢ gives ViV, € ¢ and by (*),

r'ilk eT.

CASE 6: Filye L350, € T. The proof that r.:, e T is almost
identical to the proof of Case 5.

'a)
I
wn
™m

. ‘ c
Ity ri» Tiig € T. Then by the definition of T, ViV € T.

If ViV ¢ E, then Vivj € T¢ by (*), so the transiti-

vity of ¢ gives V.V, ¢ T and therefore 2.2, € T
1k ik

by (*). If Vivy € E, then by property (b), 2.8 € T.
(1f 2,2. ¢ T, then property (b) implies Ty € T,

ki
contradicting ViV € ¢ and (*).)

o
o
17
(4]
|co

r. 23, erk e T. The proof that rry € T s almost

identical to the proof of Case 7. This proves the lemma.

Now by Theorem 2.1, (Pn’ T) is associated with a representation

1 of G and clearly, by the definition of T, this implies that TR

and TL are also associated with 1. Thus the theorem is proved. g
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Theorem 3.2
Let TR and TL be associated with a representation [ = {I],..., In}
e I{(G). Then FG(I) = (Pn, T), where T is defined as in the proof

of Theorem 3.1.

Proof: If FG(I) = (Pn, T'), then T'an =T, and T'|L = TL
because TR and TL are associated with I. Furthermore, by Theorem

2.1, {g.,r.: i=1,...,nlcT" and {zirj, z.ri: vivj e E} < T'. For

i j
each vivj ¢ E, either rirj € TR or rjri € TR’ Since TR and TL
are associated with I, the former case implies that Ii < Ij and

the latter that Ij < Ii' Hence

{zir., riz

j vivj ¢E and r.r; ¢ TR} c T,

it i

Thus T T' andso T=T' because T 1is a linear order on Pn. 0

Corollary 3.3
Let I, 1' e I(G). In~1' iff FEL(I) = FEL(I').

Proof: If I~ I', then FG(I) = FG(I') = (Pn, T') for some linear
order T' on Pn’ Since TR and TL are just the restrictions of
T' to R, and L., respectively, we obtain FEL(I) = FgL(I').
. RL - rRLyyey o
Conversely, if Fg (1) = Fa (; ) = ((Rn. TR)’ (Ln. TL))’ then by
Theorem 3.2, FG(I) = (Pn, T) = FG(I') where T 1is defined as in the

proof of Theorem 3.1. Therefore I~I'. []

Thus FEL splits I(G) into the same equivalence classes as FG'

and hence defines the same chronological orderings as FG'
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As for Theorem 2.1, we can ask whether Theorem 3.1 is useful for
recognizing interval graphs. More generally, as in Chapter 2, we can
ask whether Theorem 3.1 is useful in the situation in which we are
given partial orientations on Rn and Ln and we wish to know
whether they can be extended to linear orders which are associated with
a representation of G.

Theorem 3.1 can be used for recognizing interval graphs by means
of an algorithm very similar to Algorithm 2.3. However, it also takes
0(]V|3) steps. Like Algorithm 2.3, it could be modified to take in
the more general situation, but a little reflection shows that this is
really only a special case of Problem 2.2; it is the case in which the
initial conditions in S are restricted to Rn or to Ln. For that

reason, such an algorithm will not be discussed here.




CHAPTER 4: CHRONOLOGICAL ORDERINGS III

In this chapter, we formulate the concept of chronological
ordering in a third way, which facilitates the construction of

algorithms for solving problems not solvable by the earlier algorithms.

4.1 Main Results

Let C, 0, F be irreflexive relations (i.e., edges) on V. Let

1 1

D(V) = {(Vs C+0+F): Cn C- =0 nﬁo- =Fn F-] =@ and

D(V) can be thought of as the set of all oriented graphs with veftices

V and with exactly one edge between every two vertices (i.e., a tour-

nament), whose edges are partitioned into the three sets C, 0, and F.
Let I = {I],..., I} e 1(G), with I, = [ai, b1] for

i=1,..., n. The following process constructs an element (V, C+0+F)

of D(V). Let

C = {vyvy: a5 <@y < by < by} (1; contains 1.)
0= {vivyt @y < ay < b, < bj} (Ij overlaps 1. on the right)
F o= {viv5: 85 < by < ay < byl (Ij follows 1.).

Since exactly one of these possibilities is true for every pair of

intervals in 1, it is clear that (V, C+0+F) ¢ D(V). This defines a

mapping FEOF: 1(G) » p(v). Call FEOF(I) the tournament associated

with 1. See Figure 4.1 for an example of this.

i mabrEa e
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G A representation I of G:
v
1 1] = [ »3] 12 = [2.8]
13 = [4,6] I4 = [5,7]

Representation I displayed as intervals:

Figure 4.1: An example of the mapping FgOF,

Theorem 4.1

A graph G = (V, E) is an interval graph iff there exists

D = (v, C+0+F) e D(V) with the following properties:

(a) C+0=¢
(b) C+0+F and ¢! 40+ F are transitive

(c) F(c" +0+F)cF.

(d) (C+ 0+ F)FeF.
Furthermore, if this is the case, then D is associated with some

representation in I(G).

Proof: Let 1= {I;s..., I} e 1(G) where I. = [ai. bi]’ for
i=1,...,n. We will show that FEOF(I) has the desired properties.
tet FEOF(1) = 0 = (V, C+O+F). Cleariy. Ty n 1y # 8 3fF wyvyeC

. V., v. ¢ 0. Therefore , property (a)
or vjv‘ e C or vle e or vj i € property (
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is true.

COF

It can be seen by looking at the definition of FG that

Vivj ¢ C+0+F <=> bi < bj' Since the set {bi: i=1,..., n} ids tran-

sitively ordered on the real line, so is C+0+F. Similarly

1 -1

vivj e C' +0+F <=> a; <a;, s0 CC' +0+F is transitive. This

J’
proves (b).

-1
For (c), let vivj e F, Vjvk e C +0+F. Then a,; < bi < aj <

a, < bk and so ViV € F. Similarly, if Vivj ¢ C+0+F and Vjvk e F,
then a; < b, < bj <a, <b and hence ViV € F, which proves (d).
This proves necessity in Theorem 4.1.

Let D = (V, CH0+F) ¢ D(V) have properties (a)-(d). We construct

1inear orders T, on Rn and TL on Ln by letting

R
(*) rirj € TR <=> v.iVj € C+O+F’ and
= -1
(**) lilj € TL <=> vivj e C”' +0+F.

Lemma 4.1.1: TR and T, have properties (a) and (b) described in

L
Theorem 3.1.

Proof of Lemma 4.1.1: Let lilj €T and v, ¢ N(vj)\N(vi).
1

+0+F and ViV ¢ E so by (a) above, ViV € F or

Then Vivj e C

ViYi € F. If ViYs € F, then (c) above implies that Vkvj e F and

hence Vkvj ¢E, contradicting Vi € N(vj). Thus ViV, € F and hence

riry € TR by (*).

R gl
- g

Now let LPL TR and let ViV € E, vjvk ¢ E. Then v.v. €

" i'3
C+0+F. If Vjvk ¢ F, then ViV € F by property (d), which contra-

dicts property (a).
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k'J
by (**). This proves the lemma.

Mence v, v. e F (vjvk ¢ £ +0 by property (a)) and zklj «T|

Now by Theorem 3.1, G 1is an interval graph as desired. To show
that D is associated with some representation of G, let
1= {I],..., In} e 1(G) be a representation to which TR and TL
(defined above) are associated and let I, = [ai, b1], i=1,...,n.
(One such 1 1is constructed in Theorems 3.1 and 2.1.) We claim:
P71 < o,

If vivj e C, then by (*) and (**), rirs € Ty and 2jzi € TL.
Now Tp and T, are associated with I, and therefore aj <a, <b, <

b. as desired.

J

If Vivj ¢ O, then r].r'\j € TR and zizj € TL’ as before, and
hence a; < 2, and bi < bj. Since ViVj € E, Ii n Ij ¥ 0. Thys
aj < bi and therefore a, < aj < bi < bj‘

If vivj e F, then a; «< aj and bi < bj' Since Vivj ¢ £, it
must be true that bi < aj or bj < a,. The latter cannot happen

since a; < bi < bj. Therefore bi < aj and so a, < bi < aj <bj.
This proves that D is associated with I and completes the proof of

Theorem 4.1, [J

Note: An alternate proof of this result is contained in Fournier
[8] (see also Golumbic [12]). He provides a more direct construction
of a representation I to which D is associated. For any relation

R on V, tlet R(vi) = {veV: Viv e R}. Similarly, let R'](vi) =

{veV: LA R}. Then Fournier shows that D 1is associated with
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Theorem 4.2

Let D = (V, C+0+F) e D(V).

2
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1+ e+ 0T+ v+ IFT (v and
2n - [(CHOHF) (v )} - [FLv,)]

Theorem 4.1, as the next theorem shows.

(1) D has properties (b), (c), (d) in Theorem 4.1;
(2) The following conditions hold:

2

(q) F
(r) CFcF

(s) 0CcO+C.

(e) CcC
(f) (0+F)%c 0 +F
(@) Ffno=p
(h) FOn O =29
(i) OFnO=¢0
(i) CFanD =29
(k) CFnd=9
? (1) OCnF =g
(3) The following conditions hold:
(m c2cc
(n) 02co+F
(o) OF ¢ F
(p) FOcF

Proof: (1)=>(3): By Theorem 4.1,

D

is associated with a

{Iy,..., 1.} defined as follows. If 1. = (a;, bi]’ then let

Some other properties can be substitued for (b), (c), and (d) in

Then the following are equivalent:
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representation {I;,..., I} ¢ I(G) where G = (v, {+0). Let I, =
[ai, bi] for i=1,...,n

If vivj, Vjvk e C, then

3 < aj < ai < bi < bj < bk

and so ViV, € C. This proves (m).
1f vivj, Vjvk e 0+F, then a; < aj <3, and bi < b:j < bk
and so ViV, € 0 + F. This proves (n).

If vivj e 0, vJ.vk e F, then

ai < aj < bi < bj < ak < bk

and so v.v, e F. This proves (o). The proofs for (p), (q), and (r)
are similar to these.
To prove (s), we note that if Vivj e 0 and vjvk ¢ C, then

a. < aj < bi < bj < bk‘ Also ak < aj. 1f 3 < ai < a,

; i then

ViV € c. 1If a; < < aj, then ViV € 0.

(3) => (2): It is easy to see that the following implications
are true: (m) => (e); (n), (o), (p), and (@) => (f); (q) => (g);
(p) => (h); (o) => (i); (r) => (J) and (k); (s) => (1).

(2) => (1): It is easy to prove that the union of two complement-
ary partial orders (irreflexive, transitive relations) forms a linear
order. Therefore, (e) and (f) => (b). Furthermore, conditions (f),
(g), (i), (j), and (k) imply (d), and conditions (f), (g), and (h)
imply that F({0+F) < F. Therefore it only remains to show that

FCV e F. But if FC'nO#@, then OCnF @, contradicting (1).
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]

If FC ' n c'] 0, then CFnC#@, contradicting (j). Therefore,

FC'] c F since FC']c (C'] + 0 + F). This completes the proof. [J

Theorem 4.3
et I, 1' e I(G). I~I' <=> FgOF(I) - FEOF(I').

Proof: Let 1 = 1S ST I} in which I = [ai, bi]’ and let

I' = {Ij,eees I} in which I3 = [al, b1 Let FEOF(I) = (V, C+0+F)

COF
G

the following are true:

and Fo  (I') = (V, C' +0' +F'). Then I~ I'<=> for all i and Js

(i) a, < a. iff a' < a'
. . . .
(i1) a,; < bj iff a; < bj

(iii) b, < a, iff b,'i < a&

. . , ,
(iv) bi < bj iff bi < bj

<=> for all i and j, the following are true:
$ [
(v) vivj e C iff Vivj e C
(vi) Vivj e 0 iff Vivj e 0
(vii) Vivj € F iff ViV e F ;

= FOH(n) = FF().

Thus FEOF: I(G) ~ D(V) yields the same equivalence classes

(i.e., chronological orderings) as FG: 1{G) » 0n and FgL: 1(G) »
Rn x Ln’

Notice that, if D = (V, C+0+F) ¢ D(V) 1is given, it can be
determined in 0(|V|3) steps whether D has any of the three

equivalent sets of properties in Theorem 4.2 and hence whether D is
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associated with a representation of G = (V, C+0). Although this does

not lead to a very efficient recognition algorithm for interval graphs,
it does lead to algorithms which can solve problems beyond the reach of
those presented in Chapters 2 and 3.

For example, using the results in Chapters 2 and 3, we can
determine whether a graph G has a representation in which certain
intervals are properly contained in others. However, if we desire to
know whether G has a representation in which those intervals are the
only ones properly contained in others, the results obtained earlier
are useless. We will shortly present an algorithm which will solve
this problem using Theorems 4.1 and 4.2.

Let us return to our problem in archaeological seriation. Under
a few basic assumptions, we were able to deduce that one of the

chronological orderings of G_ contains a chronological representation

p
of the artifacts.

Now, if the collection of graves is extensive enough, then besides
the previously mentioned assumptions, it might be reasonable to make

another assumption:

Style u appeared after style v and disappeared
before style v 1iff every grave containing style

u also contains style v.
For simplicity, let us make one additional assumption:
No two styles appear in exactly the same graves.

If two such styles exist, we simply remove one from under consideration.

As there is nothing in the data to distinguish between such styles, it
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can be assumed that they have the same interval of use.
Now we can represent the data by a mixed graph G = (V, E+C). In

this form, V is the set of artifacts and
Vivj ¢ C iff every grave containing style v;
also contains style vj.
v.v.e E 1ff styles Vi and Vj appear in a
common grave but Vivj ¢ C and

Vjvi ¢ C.

Then, according to our assumptions, G' = (V, E+C) must be an
interval graph and have an interval representation {I],..., In} e 1(G")
in which Vivj e C iff Ii c Ij' Furthermore, any such representation
is a possible chronological representation of the artifacts. Thus

we have the following problem.

Problem 4.4

Instance: Graph G = (V, E+C).

Question: Does G' = (V, E+C) have a representation {Iy,..0s I}e

oy s . - o
1(G') in which Vivj e C <=> Ii c Ij.

Note that we have specified exactly which intervals we want to be
contained in others in the representation.

By the preceding discussion and theorems, this question is
equivalent to asking whether there exist relations 0 and F on V
such that 0 =E, F=VANE\E, and (V, C+O+F) e Fgol (1(G')). This

gives us the following theorem.
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Theorem 4.5
G' has a representation as desired in Problen 4.4 iff the foilowing
conditions hold:
(1) xy e C= Neu(x) = igu(y)s
(2) %< e
(3) there exist relations 0 and F c VkV with the following
properties:
(a) 0=¢E
(b) F = VAV\E\C
(c) (0+F)2co+F
(d) F
(e) OFcF
(f) FO c F.

c F

Proof: (=>) Given such a representation 1 of G' Tlet

D = (V, C+0+F) = FSOT(I). This 0 and F satisfy the conditions in

(3) by Theorems 4.1 and 4.2. Condition (1) is satisfied since if

Ii c Ij, then any interval that intersects Ii must also intersect

Ij. Because I, «c IJ eI, => I, < I, condition (2) is satisfied.
(<=) A1l we need to show is that D = (V, C+O+F) ¢ FSV (I(6')).

? By (a), (b), (c), and (2), it is easy to see that D e D(V). By
Theorems 4.1 and 4.2, we need only show that conditions (e)-(2) are

true in Theorem 4.2. But the proofs of (e), (f), {g), (h), and (i)

i are automatic. Conditions (k), (z), and (j) follow from property (1).

0
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This theorem erables us to construct an algorithm that solves
Problem 4.4. Conditions (1) and (2) of Theorem 4.5 can be checked in
0(|Vl3) steps. We next describe an algorithm of complexity 0(|V|3)
for constructing orientations 0 and F as desired or showing that
none exist.

By ignoring T and representing VXV\E\E by H, we can state

this problem in the following manner.

Problem 4.6

Instance: Graph G = (V, E+H) with E=E and H = f.

Question: Do there exist orientations 0 of E and F of H with
the following properties:
(1) (0+F)2c0+F (3) OFcF

(2) FPcF (8) FO < F?

Henceforth, an undirected graph G = (V, E+H) will be called
partitioned if E and H consist of (disjoint) undirected sets of
edges. Also 0 will always denote an orientation of E and F an
orientation of H.

By property (1), O0+F 1is transitive. For this reason, if
orientations 0 of £ and F of H have properties (1)-(4), we

will call O+F a strongly transitive orientation (STRO) of G (or of

E+H), or say that O+F 1is strongly transitive.

To be able to determine whether a partitioned graph (V, E+H} has

a STRO, we need to develop some theory that is a modification of

Golumbic's results [12; 13; 14] on transitive orientations of graphs.
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It is urged that the reader study these papers simultaneously with the
following pages of this chapter (see also Pnueli, Lempel, and Even
[25]).

As motivation for the following definitions, we consider some
necessary conditions for a graph to have a strongly transitive orient-
ation. If we have a triangle two of whose edges are in H and one is
in E, then the two edges in H must both be pointed toward or both
away from their common vertex, by property (2). Properties (3) and
(4) say that, if we have a triangle two of whose edges are in E and

one is in H, then the triangle must be oriented as in Figure 4.2.

Figure 4.2: Desired orientation.

Define binary relations Tys Ty Tgs Tg» Tg on E+H as follows

(see Figure 4.3):

bcTIb'c' <=> f(either b =Db' and cc' & E+H

or ¢ =c¢' and bb' ¢ E+H

r 1
bcrzb'c' <=> Jeither b=b', cc' ¢eE, bceH, b'c'eH

- L0!‘ c=c', bb' eE, bceH, b'c'ed

,

bcf3b'c' <=> +either c=b', bc' eH, bceE, b'c'etk

Lor ¢'=b, b'ceH, bceE, b'c'et
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bcr4b‘c' = |either b=Db', cc' e E, bceE, b'c' eH
or b=b', cc' ¢E, bceH, b'c' eE ]
bcrsb'c' = |either ¢ =c¢', bb' e E, bceH, b'c' et
or c=c', bb'eE, bcekE, b'c'eH. 1
0
b=b' c=c' c=b' c'=b
c c' b b' b c! b’ c
I'z F3
b=b' ¢'  b=b' c b c=c' b' c=c'
I'4 I‘5
Figure 4.3: I‘], 1‘2, I‘3, I‘4, l"s.
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Note that Tys---s Ty are symmetric relations and r is
reflexive. They each represent a forcing of the orientations of edges
in the sense that, if G has a STRO (V, 0+F) and bc e 0+F, then
b'c' must also be in O0+F. In brief,

r = forcing is required for O0+F to be transitive,

Ty = forcing is required for F to be transitive, and

I3s Tgs Tg - forcings arerequired to ensure that OF < F and

FO ¢ F.

The reflexive transitive closure T* of r],..., r5 is an
equivalence relation on E+H, partitioning E+H into what we shall

call strong implication classes of E+H. Thus abr*a‘'b' iff, for some

m,

ab = a;b,r. ab,r. °c- 1, a b =a'db
L R SR P iy mm

where i],..., im_1 e {1, 2, 3, 4, 5}. Such a sequence is called a
r-chain from ab to a'b'. Golumbic defines “implication classes"
similarly, but uses only N since he does not consider partitioned
graphs. Each strong implication class is a union of some of Golumbic's
implication classes. What is important here is that virtually all of
his results carry through when "implication class" is replaced by
"strong implication class".

A fundamental result is the following 1emma.

Strong Triangle Lemma (ST Lemma)

Let a, B, v be strong implication classes of a partitioned graph

G=(V, E+tH), a # 8, a 1-], having edges ab ¢ ﬁ, ac ¢ B, bc e o.




—

Then
(a) ab, ac, and bc are all in E, all in H, or ab ¢ H,
ac e H, bc € E, in which case 8 = vy

(b) if b'c' € a, then ab' ey and ac' ¢ B (see Figure 4.4),

Figure 4.4: ST Lemma.

Proof: (a): The proof consists of checking all possible 23= 8 ways
that the three edges of the triangle could be in E or H. The only
ones that don't contradict o # 8 and a # y'] are when all are in E,
all are in H, or abe H, ac e H, bc e E, in which case abrzac,

so 8ny#@ and hence B8 = .

For examplie, we cannot have ab ¢ H, ac ¢ E, bc ¢ H, because
then bcrzba and so6 an y-] £ @, which means a = y-], a contra-
diction.

(b): If b'c' € a, then by the definition of a strong implication
class, there exists a r-chain

bc = b]c]ri]bzczriz e rim_fmcm = b'c'.
The proof proceeds by induction on m. It suffices to consider the
case in which m =2, i.e., the case where bcrib'c' for i=1, 2,

3, 4, or 5. We consider each of these possibilities separately.
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CASE 1: bcr]b'c'. Then ab' e y and ac' e 8 by Golumbic's

Triangle lemma [13, p. 71].

CASE 2(a): bcrzb'c', b =b' (see Figure 4.5).

Figure 4.5: Case 2(a).

Then bc, b'c’ € H, and c¢c' ¢ E by the definition of T, and so

ab, ac e H by part (a). If ac' ¢ E+H, then bar]b‘c' and there-
fore y'] natP(=><=). If ac' e¢E, then b'c'r,ba, so

y'] na# P (=><=). Thus ac' e H and therefore acr,ac’  which means

that ac' e 8. Also ab' = ab e y.

CASE 2(b): bcrzb'c', c =c¢' (see Figure 4.6).

bl
Figure 4.6: Case 2(b).
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Then as in Case 2(a), {ab, ac, bc, b'c'} c H, b'be E, and ab' ¢ H.

Hence abrzab' and therefore ab' ¢ y and ac' = ac ¢ B.

CASE 3(a): bergb’c’, ¢ =b' (see Figure 4.7).

Figure 4.7: Case 3(a).

If ac' ¢ E+H, then bcr4bc' and bc'r]ba, SO an y'] 0 (=><=).
Thus ac' ¢ E+H. We claim: ab e¢ H, ac ¢ H. If this is not true,
then by part (a) of the lemma, ab e E, ac e E. Now if ac' ¢ E, then
bc'r4ba, SO an Y-] 0 (=><=).

If ac' ¢ H, then acr3b'c', soO Bnaf# g (=><=). Thus our
claim must be true. If ac'’ ¢ E, then bc'rzba, SO an 1'1 $ 0
(s><=). Thus ac' ¢ H and so acrzac‘, and therefore ac' e 8. Also

abrzab', so ab' € v.

CASE 3(b): bcr3b'c', c¢' =b (see Figure 4.8).




bl
Figure 4.8: Case 3(b).

As in Case 3(a), ab e H, ac ¢ H, and ab' ¢ E+H. I1f ab' ¢ E, 1

then bergb'c and b'cryac, so an g # @ (=><=). Hence ab'e H

and so abrzab' which gives ab' ¢ y. Also acrzab = ac', s0O

ac' € B.

CASE 4(a): bcr4b'c', b* = b (see Figure 4.9)

& Figure 4.9: Case 4(a). ?

F and b'c’ e H, bc ¢ E, cc' ¢ E. As in Case 3(a), ac' e H,

ab e H, and ac ¢ H. But acréac', and so ac' € 8. Also




ab' = ab ¢ v.

CASE 4(b): bcr4b'c', b' = b (see Figure 4.10) and b'c' ¢ E

bc ¢ H, cc' ¢ E.

Figure 4.10: Case 4(b).

If ac ¢ E+H, then b'c'riba, and so an y-] £ 0 (=><=). If
ac ¢ £, then b'c'r]ba, SO an y'l #@ (=><=). Hence ac ¢ H

and therefore acrzac' which means ac' ¢ 8. Also ab' = ab e v.

CASE 5(a): bcrsb ¢', c¢=1¢' (see Figure 4.11) and bc ¢ E,

b'c'* ¢ H, b'b e E.

Figure 4.11: Case 5(a).

If ab' ¢ E+H, then acrib'c’ andso Bnaf 4 (=><=). Now, as
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in Cace 3, abe H, ac e H. If ab' ¢ E, then b'c'rzac, SO
anpg#P (=><=). Thus ab' ¢ H and so abrzab' which means

ab' ¢ y. Also ac' = ac € 8.

CASE 5(b): bergb'c's, € = ¢ (see Figure 4.12)

Figure 4.12: Case 5(b).

and bc ¢ H, b'c’' ¢ E, bb' ¢ E. Then ab e H, ac ¢ H by part (3)
of the lemma. If ab' ¢ E+H, then acryb'c', so Bna# @ (=><).
If ab' ¢ E, then acrsb'c', sO Bna? P (=><=). Thus ab' ¢ H
and so abrzab' which means ab' € y. Also ac' = ac ¢ B. This

completes the proof of the ST Lemma. [J

Corollary ST
Let a, B, Y be strong implication classes of a partitioned graph

G=(V, E4H), o # 8, a# y'], B8 # vy, having edges ab e¢ y, ac e 8,
bc € a. Then

(a) ab, ac, bc are all in H or all in E; and

(b) if b'c' ea and a'b' €y, then a'c' e B.




e

61

Proof: (a) Since 8 # vy, part (a) of the ST Lemma shows that all
three edges are in H or all are in E.

(b) We apply the ST Lemma using b'c' e a to get ac' e 8,
ab' ¢ y. We apply it again to the triangle in Figure 4.13, using

b'a' ¢ y'] toget c'a' e e'], i.e., a'c' € 8. [

Figure 4.13: Corollary ST.

We need one more fundamental result.

Theorem 4.7
For any union U of strong implication classes of a partitioned graph
G = (V, E+H), if U is transitive, then U 1is also strongly

transitive.

Proof: Let 0u and Fu denote the edges of U in E and in H,
respectively. We are assuming (0u + Fu)2 <0, + Fu. A1l that remains
2
to be shown are Fu < Fi» 0u F,c F,» and FO, cF.
(a) Let ab, bc e Fu. Then ac ¢ 0u + Fu, by transitivity.
If ace0,, then abr,cb, so cbe F . But then bceF, and

cb ¢ Fu which contradicts the transitivity of 0u + Fu. Hence

ac ¢ F .
€

-t e e s
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(b) Let ab e Fu, bc ¢ Ou. If ac e Ou_ then aerych, so
cb € 0u and bc ¢ Ou. a contradiction. Hence ac ¢ Fu.

(c) Let abe Ou’ bc ¢ Fu. If ac e Ou, then acr3ba. s0
ba ¢ 0u and ab ¢ Ou’ a contradiction. Hence ac¢ € Fu. This

completes the proof. [J

Because of the ST Lemma and Theorem 4.7, virtually all of the

results by Golumbic [13] carry over to strongly transitive orientations.

The proofs apply almost verbatim upon replacing "“implication classes”
by "strong implication classes", "transitive orientation" by
"strongly transitive orientation", and "“E" by "E+H". Thus most
such proofs will be omitted here. Basically, Golumbic's methods
suffice to prove transitivity for our case, and then Theorem 4.7 gives

strong transitivity.

Theorem G.1 (This theorem corresponds to Golumbic's Theorem 1.)
If 0+F 1is a STRQ of a partitioned graph (V, E+H) and o 1is a strong
implication class of E+H, then an a'] =P and either (0+F) na =

a or (0+F) na = u-].

Theorem G.2 (This theorem corresponds to Golumbic's Theorem 2.)
Let o be a strong implication class of a partitioned graph (V, E+H).
Then either

(I}) a=a-= a-], or

(I1) an a'] =f, o and a'] are strongly transitive, and

they are the only STRO's of a.
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Sketch of proof of Theorem G.2: Using the ST Lemma in Golumbic's

-1
proof of his Theorem 2, we obtain the result that a and « are

transitive, if an ol = @. Then by Theorem 4.7, o and oV are

strongly transitive. [J

A complete undirected subgraph (VS, S) on m#l vertices of a
partitioned graph G = (V, E+H) will be called a simplex of dimension
m if each undirected edge ab of S is contained in a different
member of {a: & is a strong implication class of E+H}. Note that
SckE or ScH by the Corollary ST.

A multiplex of dimension m generated by a simplex S of
dimension m is the subgraph (VM’ M) of G defined by

M

"

. *
{vivj. vivjr xy for some xy e S}

Ua, the union being over all strong implication

classes a such that a n S # 0.

Theorem G.3 (This theorem corresponds to Cor. 8, Thm. 9, and Thm. 10
of Golumbic.)

1. Let M, c M, be multiplexes.
(a) Every simplex generating My is contained in a simplex
generating MZ'
(b) Every simplex generating M2 contains a subsimplex which

generates M].

St Mt X om0
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2. If M is a multiplex generated by a simplex S, then M is a

maximal multiplex iff S is a maximal simplex.

3. Two maximal multiplexes are equal or have disjoint edge sets.

Theorem G.4 (This theorem correspondsto Golumbic's Thms. 12 and 13.)
1. Any maximal multiplex M of dimension m which has a STRO, has

(m+1)! STRO's.

2. Let E+H = M] + 0. 4 Mk be a partition of E+H into maximal
multiplexes. If (V, E+H) has a STRO, then the number of STRO's
that (V, E+H) has is H‘;:](mi + 1)! where m; = dimension of
Mi'

Sketch of proof of Theorem G.4: Golumbic shows that any of the (m+1)!

transitive orientations of a maximal simplex in M extends (via I*)
to a transitive orientation of M. Then Theorem 4.7 shows that it
extends to a STRO of M.

Golumbic's Theorem 13 shows that any one of the possible orienta-
tions can be chosen for each M; and the sum of all these oriented
multiplexes gives a transitive orientation to (V, E+H). Theorem 4.7

again gives us the result that it is actually a STRO. []

Let (V, E+H) be a partitioned graph.

E¥H = B, + B, + "' + B,

is called a strong decomposition of G if B; is a strong implication

class of B; + --- + Ek for 1=1,..., k.

s e
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Theorem G.5 (STRO Theorem; this theorem corresponds to Golumbic's

Thm. 17.)

Let (V, E+H) be a partitioned graph with strong decomposition

E+H = E] + eee 4 Ek. The following are equivalent:
(a) (v, E+H) has a STRO. ]
(b) an L @ for all strong implication classes o of E+H.
(c) B; ngy =9 for i=1,..,k

Furthermore, when these hold, By * cor * By is a STRO of E+H.

Again, Golumbic's theorem, with the appropriate changes made,
proves the transitivity and Theorem 4.7 then proves the strong

transitivity.

The rest of Golumbic's results in [13] also apply to STRO's, but
they are not particularly important to the present discussion, so will
not be further explored.

Now, similar to the algorithm constructed by Golumbic, Theorems
G.4 and G.5 lead to an O(5-|E+H|) - time and O(|E+H| + |V]) - space
algorithm for determining if a partitioned graph (V, E+H) has a STRO
and constructing one if possible. Here & 1is the maximum degree of
the vertices.

See Golumbic [14] for a parallel presentation to the following
algorithm. Our algorithm uses the function

CLASS (1, j) = 'o if vivj ¢ E+H

k if Vivj has been assigned to By

A

-k if v.vg has been assigned to B;]

undefined if ViVYj has not yet been assigned.
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Input: A partitioned grapt G = (V, E+H) in the form of adjacency sets

ADJ(i) = {j: vivj e E+H).

Qutput: A strong decomposition of G given by the function CLASS and
a variable FLAG which is Q0 if G has any STRO's and 1 otherwise.
If FLAG is 0, a STRO is given by those edges whose CLASS is positive.

Method: Initially FLAG « 0. By the kth iteration, By *+ oot B,
has been determined, and FLAG has been changed to 1 if &, n 31?‘ 4P
for any i =1,..., k1. In the kth iteration, an unexplored edge e,
is chosen. The recursive calls of EXPLORE and FORCE cause the explor-
ation of the whole strong implication class of e ~in E+H\B\---\g, ;.
(This is due to the fact that we ignore edges whose CLASS value is
between -k and k.} This yields B> and if B N B;] # B, FLAG

is set to 1.

Algorithm 4.8

begin
initialize: k « 0; FLAG « O;

for each edge Vivj e E+H do
if CLASS (i, j) is undefined then
begin
k « k+1;
CLASS (i, j) « k; CLASS (5, i) « -k;
EXPLORE (i, )

end;
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Procedure EXPLORE (i, j):
for each m e ADJ(i) such that [m ¢ ADJ(j) or |CLASS (j, m)| <k] do
FORCE (i, m);
for each m e ADJ(j) such that [m ¢ ADJ(i) or [CLASS (i, m)| <k]
do FORCE (m, j)3
for each m such that ViV ViVj e H, v,vp e E do FORCE (m, 3);
for each m such that v.v vivmeli, V¥j € E do FORCE (i, m);

i'j?
for each m such that ViV ViVm € E, vyv, € H do
begin

FORCE (j, m); FORCE (i, m)
end;

for each m such that v.v Vivp € E, v,v_eH do

A jm —
begin
FORCE (m, i); FORCE (m, j)

end;

Vi€ Hy vivp e E, ViV € E do

for each m such that v, j

begin
FORCE (i, m); FORCE (m, j)
end

return

e ————.—————
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Procedure FORCE (i, j):

if CLASS (i, §) is undefined then
begin
CLASS (i, j) « k; CLASS (j, i) « -k;
EXPLORE (i, j)
end
else
if CLASS (i, j) = -k then
begin
CLASS (i, j) « k; FLAG « 1;
EXPLORE (i, j)

end

return

We store the adjacency sets as linked lists as described by
Golumbic, but use five fields for each element of list ADJ(i)
representing edge Vivj’ containing respectively, j, a field indicat-
ing whether vivj e £ or vivj e H, CLASS (i, j), pointer to CLASS
(j, i), and a pointer to the next element on ADJ (i). Then the
storage requirements are O(|V| + |E+H|) and Golumbic's analysis
shows that the algorithm takes 0(&:|E+H|) steps.

As Golumbic mentions, Theorems G.3 and G.4 can be used to count
the number of STRO's a graph has. A1l we need do is make a local
search of edges by picking an edge at random and building larger
simplices, each containing its predecessor, until we have a maximal

simplex. This simplex will generate a maximal multiplex.
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By methods very similar to Algorithm 4.8, the enumeration can be
done in O(s-|E+H|) steps using O(|V]| + [E+H|) storage spaces. The

details are left as an exercise for the reader.

4.2 A Generalization

Problem 4.4 presents a complete undirected graph whose edges have
been partitioned into three sets: C, E, and H = VXV\E\C, one of
which (C) has been oriented. It asks for orientations of E and H
with certain properties.

This view leads naturally to the question: What if one of the

sets E or H is initially oriented instead of C? Or more generally,

what if some of the edges of C, some of E, and some of H are .
oriented? When can these oriented sets of edges be extended to |
orientations of , E, and H with the desired properties?

For the rest of this chapter, E will not necessarily be an

undirected set of edges, as was previously the case.

Problem 4.9

Instance: Relations M, E, H such that M+E+A = Vv,

Question: Do there exist orientations C, 0, and F of M, E, and H,
respectively, so that (V, C+0+F) € FEOF(I(G)) where
G = (v, R+E)?

To solve this problem, it is helpful to define:
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C* = {Vivj e M: vJ.vk ¢ EM and ViV, € H, for some vk},
M' = {Vivj e M; Vivi ¢ M},
E' = {Vivj e E: Vjvi ¢ El,
H' = {Vivj e H: Vivi ¢ H}.

Theorem 4.10
There exist orientation C, 0, F as desired in Problem 4.9 iff
(a) M'y C* can be extended to a transitive orientation C of
M, and
(b) E' + H' can be extended to a strongly transitive orientation

0+F of E+H.

Proof: (<=) Requiring C* c C ensures that conditions (j), (k), and
(2) hold in Theorem 4.2. The other conditions (e)-(i) hold by the
transitivity of C and strong transitivity of O0+F. Thus by Theorenms
4.1 and 4.2, C, 0, and F are the desired orientations.

(=) If (V, C+0+F) ¢ FSUT (1), for some I= (I ,..., 1} e 1(6)
then by Theorems 4.1 and 4.2, C 1is transitive and O+F s strongly
transitive. Furthermore, E' < 0, H'c F, and M' c C. To show that
C* c C, we assume this is not so. Then there exist Vi Vj’ Vi such
that v.v, ¢ C, Vjvk ¢ E#M and v.v, € H. But then I.c I.,

Ji ik J i

I. n Ij #9, and Ik n Ii = @. Clearly this cannot happen and so

Kk
C* c C. This completes the proof. [J

Theorem 4.10 has now reduced the solution of Problem 4.7 to the

solution of the following two problems.
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Problem 4.11

Instance: Mixed graph G = (V, E). 4

Question: Does there exist a transitive orientation T of G?

Problem 4.12
Instance: Graph G = (V, E+H), with En H = D.
Question: Do there exist orientations O of E and F of H such

that (V, 0+F) 1s a strongly transitive orientation of

(v, E+H)?

These problems have nearly identical solutions. Let

a(E') = {vivj e E: vivjr*xy for some xy e E'},

afE' + H') = tvyvy e E+H: vivjr*xy for some xy e E' + H'},

where in the first set, T* is the transitive closure of Ty» where-
as in the second set, I'* is the transitive closure of r], r2. r3, 3
Ty and Tgs and where E' and H' are defined prior to Theorem

4.10.
Theorem 4.13

There is a relation T as desired in Problem 4.11 iff
(a) (v, E) is transitively orientable, and

(b) a(E') is acyclic.

“nenrem 4.14

"~ere are relations 0 and F as desired in Problem 4.12 iff
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(a) (v, E+H) 1is strongly transitively orientable, and

(b} a(E' + H') 1is acyclic.

Proof of Theorem 4.13: Condition (a) is clearly necessary, and (b) is

necessary because, if vivjr*xy for some xy ¢ E', then vivj must
be in the transitive orientation T as well as «xy.

To prove the sufficiency of (a) and (b), we choose a maximal
simplex Sy = (Vy, Ey) from each maximal multiplex M of (V, E).
By Theorem G.4, the m+l vertices of a maximal simpiex of dimension
m can be linearly ordered in an arbitrary manner, and, if this is
done for each maximal multiplex, we can extend these orders via I™* to
form a transitive orientation of (V, E). Hence if afE') contains
no cycles, a(E') n EM can be extended to form a linear order of VM

for each SM’ which in turn can be extended via ™ to an orientation

of M. These extensions give the desired orientation of E. [J

The proof of Theorem 4.14 is almost the same.

Parts (a) and (b) in Theorems 4.13 and 4.14 can be checked in
time O0(s-]E|) and O(s-|E+H|) respectively. One algorithm for
Theorem 4.13 consists of first extending E' to ao(E'). Then
(V, a(E')) 1is checked for cycles. (Topological sorting algorithms
can perform this step in time O(|a(E')| + |V|).) The remaining
implication classes can then be determined and checked to see if
(v, E) 1is transitively orientable. If so, we can construct the

desired orientation by choosing a maximal simplex S, = (Vo Ey) from
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each maximal multiplex M, and extending a(E') n EM to a linear

order of VM (again this can be done by a topological sorting

procedure). These orientations can then be extended to the whole graph.

The task of producing a detailed algorithm is left as an exercise for
the reader. Minor modifications of this algorithm will yield an
algorithm for Theorem 4.14 also.

In the case of Problems 4.9, 4.11, and 4.12, in contrast to
Problem 4.4, it is not easy to determine the number of solutions. This
is due to the fact that, in these cases, we are extending an acyclic
set of edges to a linear ordering in each maximal simplex. Thus to
determine the number of solutions, it is necessary and sufficient to
have an efficient algorithm for determining how many linear extensions
a partial order has. No such algorithm is known by the author. Knuth
and Szwarcfiter [22] have constructed an algorithm which determines
all such total orders, and which is linear in each output, but this

is unfortunately not the algorithm we desire.

— o




CHAPTER 5: APPLICATIONS TO SPECIAL GRAPHS

The results in Chapter 4 lead to interesting characterizations of

several types of graphs including proper interval graphs and proper

circular arc graphs. j

5.1 Proper Interval Graphs

ot o N0 1 st LN

§ The following theorem is related to the special case of Theorem

4.5 where C = 0.

Theorem 5.1
Let G = (v, E) bé an (undirected) graph. The following are equiva-
lent:
(a) G 1is a proper interval graph;
(b) There exist orientations 0 of E and F of E¢ such that:
(i) OFc F,
(ii) FOc F, and
(i11) (0+F)% < 0+F;

(c) There exists an acyclic orientation 0 of E such that

(*) ab, bc ¢ E and ac ¢ E€ => ab, bc ¢ 0 or cb, ba e 0

(see Figure 5.1).

a ¢ a ¢

Figure 5.1: Property (*).
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Proof: We show (a)=>(b)=>(c)=>(a). ;
(a)=>(b): Let I = (I35 In} e 1(G) be a proper interval
representation of G in which I. = [ai, bi]’ i=1,...,n.

Construct orientations O and F as follows. For all i and j, let o

Vivj e 0 if a; < aj < bi < bj and

vivj e F if a; < b‘i < aJ. < bj'
If Vivj e 0 and Vjvk e F, then a; < aj < bi < bj < < bk so B
ViV, € F. This proves (i). Properties (ii) and (iii) are proved i

similarly.

(b)=>(c): Given orientations 0 and F as in (b), we claim that
0 has property (*) in (c) and is acyclic. By (iii) 0 is acyclic.
Now let ab, bc e E and ac € EC. If ac e F, then by (i) and (ii),
we must have bc ¢ 0 and ab ¢ 0. Similarly, if ca ¢ F, then

cb, ba e 0.

(c)=>(a): We show that G can have no induced subgraphs which
are K]’3, IVZ, V], or IIIn, n>4, (see Figures 1.1 and 1.4) and
therefore by Theorem 1.4, G 1is a proper interval graph. If K]’3
is an induced subgraph of G (see Figure 5.2), then without loss of
generality ab e 0. Hence by propaerty (*), bc e 0. But ab e O =>
bd e O, and bc € 0 => db € O, a contradiction. So K]’3 cannot
be an induced subgraph of G. Similarly, we can easily show that

IV,, V, and III,, n >4, cannot be induced subgraphs of G. []

1
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a c

Figure 5.2: Orienting K] 3

A semi-order is a graph (V, P) such that for all x, y, 2, we V:

Xy e P and zw ¢ P => xw ¢ P or 2y ¢ P, and

Xy e P and yz e P => xwe P or wzeP.

Note that a semi-order is transitive.

Theorem 5.2

Let F be a tranSitive relation on a finite set V. Then (V, F) is

a semi-order iff F can be extended to a linear order O+F on V
such that OF <« F and FQO c F.

Proof: By a result of Roberts [28, Theorems 3 and 6], an irreflexive
relation F on a finite set V forms a semi-order iff there exists

a proper interval representation {I]...., ln} of (v, (F)C) such

that Vivj € Fem g, < ry <%y < Ty where I, = [‘i' r1], for

i=1,..., n
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Given such a representation in I((V, (F)C)), we define the

relation 0 as follows:

vivj e 0 if li < zj <ry < rj.

It is easy to see that O+F 1dis a linear order such that OF ¢ F and
FO < F,

Conversely, et O0+F be a linear order such that OF ¢ F and
FOc F. Since F2c F, Theorem 4.5 states that D = (V, 0+F) fis
associated with a representation of (V, 0) = (V, (F)%), which is the
desired proper interval representation. Hence (V, F) is a semi-

order. []

Using Theorem 5.1 and the tools developed in Chapter 4, we can
construct an algorithm of complexity 0([V]3) that recognizes proper
interval graphs and determines the number of chronological orderings
of a graph that consist of proper interval representations (such

chronological orderings will be called proper chronological orderings).

However, the algorithm described in conjunction with Theorem 1.5 can
perform these operations in linear time, so there appears to be little
reason to construct an algorithm based on Theorem 5.1. The following
discussion shows how the linear-time recognition algorithm can also be
used to enumerate the proper chronological orderings of a graph.
Recall that G = (V, E) 1is a proper interval graph iff its
augmented adjacency matrix M has the consecutive ones property.

Each consecutive ones form of M gives rise to a unique proper
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chronological ordering of G. Furthermore, all such chronological
orderings arise in this way, so the number of proper chronological
orderings of G 1is equal to the number of consecutive ones forms

of M. As described by Booth [4] or Booth and Lueker [5; 6], testing
for consecutive ones and counting the number of consecutive ones forms
of a matrix can be done in linear time and space, so we obtain the
desired result. i

Notice that this does not give all chronological orderings of G,
because G may well have representations in which one interval is
properly contained in another.

It should also be pointed out that the number of orientations O
in Theorem 5.1(c) does not correspond to the number of proper chrono-
logical orderings of G. This is due to the fact that such orientations
say nothing about the order of the connected components of G. How-
ever, for connected graphs, it can be shown that the number of such

orientations is equal to the number of proper chronological orderings

of the graph.

5.2 A Relationship among Some Graphs

Theorems 5.1 and 4.5 lead to an interesting relationship among
several types of graphs.

Let G = (V, E) be an undirected graph. G is called a
comparability graph if it can be transitively oriented. G is a rigid-

circuit graph (or trianqulated graph or chordal graph) if it does not

contain Cn’ n > 4, as an induced subgraph. G 1is a nested interval
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graph if there exists a representation (I],..., In} e I(G) such that

if Vivj e £, then Ii c Ij

indicates containment, which makes G a kind of "dual" to a proper

or Ij c Ii‘ That is, every edge

interval graph.

Let B], BZ’ Bg be the oriented graphs shown in Figure 5.3. G
is called a U-graph, where U c {B], BZ’ B3}. if it has an acyclic
orientation 0 such that (V, 0) does not contain any of the graphs
in {B], 32’ B3}\U as induced subgraphs. For example, every undirected
graph is a {B], BZ’ B3} - graph, whereas the @-graphs are exactly the

complete graphs.

A AN

Figure 5.3: B], BZ’ B3.

;
| Theorem 5.3
i Let G = (V, E) be an undirected graph.

1. G s a {B], B3}-graph <=> G is a {BZ, B3}-graph
<=> G 1is a rigid-circuit graph.
2. G is a {8], BZ}-graph <=> G 1is a comparability graph.

3. 6 is a {83}-graph <=> G 1is a proper interval graph.

P

G is a {B]}-graph <=> 6 isa {By}- graph
<=> G does not contain III4 or D

(see Figure 5.4) as induced subgraphs

<=> G is a nested interval graph.




D

Figure 5.4: 1II, and D.

4

Proof: 1. This is proved by Rose [30] and Kesel'man [20].

2. Any acyclic orientation of G not containing B3 is clearly

transitive. The converse is obvious.

3. This is just the equivalence of (a) and (c) in Theorem 5.1.

4. The first equivalence is obvious.

The second equivalence is the main result of Wolk [36; 37] (see
also Jung [17]). For the third equivalence, let {I],..., In} e 1(Q)
be a representation of a nested interval graph G 1in which v.,v. e E

13

=> Ii c Ij or Ij c Ii‘ Define an orientation 0 of E as follows:

Vivj e 0 iff I,i c Ij’ This shows G 1is a {B])- graph.

Conversely, let G be a {8}~ graph. Then by Wolk [37], 6% has
a transitive orientation F. Let C be the orientation of E such
that (v, C) does not contain B, as an induced subgraph. Then this
C and F satisfy the conditions in Theorem 4.5 (where the relation

0 =), so this theorem gives the desired result that G 1is a nested
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interval graph. [J

Let w(G) denote the clique number of a graph G, that is, the
size of the largest clique of G. Let x(G) denote the chromatic
number of G, that is, the minimum number of colors needed to properly
color the vertices of G. An undirected graph G is called perfect
if w(G') = x(G') for all induced subgraphs G' of G. See Golumbic

[12] for references to many results on perfect graphs.

Corollary 5.4

Every U-graph for which U # {B], BZ’ 83} is perfect.

Proof: Rigid-circuit graphs, comparability graphs, and interval

graphs are all perfect. See, for example, Golumbic [12]. [

5.3 Proper Circular Arc Graphs

Can the results of Theorem 5.1 be generalized to circular arc
graphs? Equivalence (b) cannot easily be generalized because, if two
arcs do not intersect, we cannot say which one is to the "right" or
"left" of tre other, i.e., there is no relation for arcs on a circle
corresponding to the relation F for intervals of the line.

However, property (c) of Theorem 5.1 does generalize, if we
restrict our attention to connected graphs. Therefore we will first

consider the case where the graph is not connected.
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Theorem 5.5

Let G be a disconnected, undirected graph. G is a proper circular

arc graph iff G 1is a proper interval graph.

Proof: (<=) This is obvious, (=>) Any proper circular arc represent-
ation of G must miss at least two points of the circle since 6 is
disconnected. We can cut the circle at one of those points and, upon

straightening it out, obtain a proper interval representation of G. []

A CORE-cycle of a graph (V, E) is a sequence [Vl""’ vm] of
(not necessarily distinct) vertices in V with the following three

properties:

(1) ViVia € E for i

(2) ViVieo ¢ E for i

1y..., m=-1, and Vo¥q € E,

Toooos m-2, and v vy & E, ovov, G E,

(3) v.=v where 1i+2 is given modulo m, for an odd

i i+2’
number of vertices v; in the sequence.
We remark that a CORE-cycle is not necessarily a cycle or circuit
as defined in section 1.1 because the vertices of the sequence need

not be distinct.

Theorem 5.6

Let G = (V, E) be a connected graph. The following are equivalent:
(a) G s a proper circular arc graph;
(b) There exists an orientation 0 of E 1in which (see Figure

5.1)

(*) ab, bc e E and ac ¢ €€ = ab, bc e 0 or cb, ba e 0;
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(c) G has no CORE-cycles;

(d) G does not have ch; nor sgl* as induced subgraphs, and

*
G¢ does not have EPCm, OPCm, sgl, sg2, sg3, sg4, sg5 as

induced subgraphs (see Figure 5.5).

ctistia mine + SR

i Proof: We will show that (a)=>(b)=>(c)=>(d)=>(a).
(a)=>(b): By a result of Golumbic [12], every proper circular
arc graph has a proper circular arc representation in which no two

arcs together cover the entire circle. let A = {A],..., An} be such

a representation of G. Furthermore, we can assume that all 2n end-
points of the arcs are distinct. Let Ai have counterclockwise
endpoint 2 and clockwise endpoint 1y for i=1,...,n.

We construct 0 as follows: If Vivj e E, then moving clockwise
around the circle, the endpoints of Ai and Aj form the sequence

[21, L.y Tiy rj] or [zj,gi,rj,ri], In the former case, we let

J* i
Vivj e 0, and in the latter, we let Vjvi e 0. We do this for all
Vivj e E. The resulting orientation of G 1is said to correspond to

the representation A. Now we need only show that 0 has property (*).

c
Let v.v. ViV € E and ViV € E-. If v.v., vkvj e 0, then

LN RN LN
zj € Ai n Ak # @, contradicting ViV € EC. If ViVis vjvk e 0,
then rj € Ai n Ak # P, a contradiction. Hence vivj, vJ.vk e 0 or
Vkvj’ Vjvi e 0.

(b)=>(c): Suppose C = [v],..., vm] is a sequence of vertices

in V with properties (1) and (?) in the definition of a CORE-cycle.
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§ LPCm* sgl*
i (LPCrn plus isolated vertex) (sgl plus isolated vertex)

e i

LPCm is a chordless cycle with m24 vertices.

oPC . is a chordless cycle with m23 vertices, m odd.

EPC,, is a chordless cycle with m26 vertices, m even.

OPCm*
(OF’Cm plus isolated vertex)

sg3

Figure 5.5: Forbidden subgraphs.
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Thei-, in any orientation 0 of E with property (*), successive

edges ViViiis VigVisz 0 C must be oriented in the same direction

(i.e, both ViVisr VisYien € 0 or both Viep¥is1® VierVi € 0},

unless Vi T Vigos in which case their orientations are in opposite 1

directions (here i 1is given modulo m). In other words, the orient-
ation of the edges in the cycle reverses every time a Visl is

encountered for which Vi =V Since we must end up with the same

i+2°
orientation for the edge Vivo with which we started, the cycle can

have only an even number of Vi such that Vi = Vigpe

(¢)=>(d): We will show that each of the forbidden subgraphs of

G and the complements of the forbidden subgraphs of G° contains a

CORE-cycle. The labels correspond to those shown in Figure 5.5.

*. *c . :
OPCm. (OPCm) contains the CORE-cycle [v], Wy Voy Wseens Vn“d'

EPC _: (EPCm)c contains the CORE-cycle [v], Voseees Vp_1s Vo
vz].
sgl: (See Figure 5.5, but ignore the isolated vertex.) (sq)©

contains the CORE-cycle [b,a,b,c,e,f,a,f,d,c,9,a,9,e,d].

sg2: (ng)c contains the CORE-cycle [c,b,a,b,f,e,f,g,a,5,d].

sa3: (sg3)® contains the CORE-cycle [c,b,g,d,g,a,9,f,c,el.

sg4: (sg4)c contains the CORE-cycle [g.d,c,a,f,g,f,b,c,b,e,b,
a,b,d].

sg5: (sgS)c contains the CORE-cycle [b,a,b,c,e,f,a,f,d,c,9,a,
g,e,d].

*
LPC : Let LPC = [v],..., vm], mz24, and let w be a vertex
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that is not adjacent to LPCm. Since G is connected, there exists

a shortest path P from o to LPCm. Without loss of generality,

P = [v] = Wys Wpaeees wy = w]. Clearly we can assume k = 3; if

k > 3, we can replace o with wy- (The vertex wq will be isolated

from LPCm by the minimality of P.)

CASE 1: wy is adjacent to only vy in LPCm. Then

[mz, Vis Voreees Voo v]] is a CORE-cycle.

CASE 2: wo is adjacent only to i and Vos OT w, is
adjacent only to Vi and L Without lToss of generality, wy is
adjacent to v, and v,. Then (w, Wos Vos Vaseees Voo Vis m2] is

a CORE-cycle.

CASE 3: w, is adjacent to v, and some v,, i#2 or m.

Then [u, Wps Vqs o Vs mZ] is a CORE-cycle.

sgl*: Consider Figure 5.6 below. As before, let [uw = wys Wos w1]
be the shortest path from w to sgl (i.e., wy is a vertex

of sgl).

CASE 1: wy is not adjacent to a,c or e. Without loss of
generality, wy = b. Then [a,b,mz,b,c,b] is a CORE-cycle. Since
in all the remaining cases, a, ¢ or e is adjacent to wys We will

assume Wy = a.

CASE Z_: N(Nz) n Sg] = {a}. Then [Uz;a.foe;fsb,c,b,a] is a

CORE-cycle.
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CASE 3: {a, d} c N(w,), {a, c} c N(w,), or {a, e} < N(u,).

Then [w!w29a9w2!d"02]’ [womzpa’wz sengla or [w,wz.a 'NZ,C,mzl are

respective CORE-cycles.

CASE 4: N(wz) n sgl = {a, b} or{a, f}. Then [w,u,,b,c,b,f,e,f,

a,m2] or [m,mz,f,e,f,b,c,b,a,w2] are respective CORE-cycles.

CASE _5_: N(WZ) n Sg] = {a’b,f}- Then [w,wz,f,e,f’b,c,b’wzl iS
a CORE-cycle.

(d)=>(a): This is a theorem of Tucker [34, p. 172]. []

Figure 5.6: The graph sgl*,

The similarities between equivalence (b) in Theorem 5.6 and
Golumbic's work [13] on transitive orientations of graphs should be
noted. If we attempt to orient a graph so that it has property (*),
the orientation of one edge may force neighboring edges into particu-
lar orientations. In this way, we obtain equivalence classes of edges,

in which the orientation of any one edge forces the orientations of
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all the other edges in its class. Furthermore, for any such class
8, it is true that B = a for some implication class o as defined
by Golumbic.

We remark that there appears to be little purpose in using
Theorem 5.6 for constructing a recognition algorithm for proper
circular arc graphs, due to the fact that a linear-time recognition
algorithm already exists (see Booth [4, p. 120]).

Furthermore, equivalence (b) is not very useful for the enumera-
tion of "chronological orderings" of proper circular arc graphs.

This is due to the fact that not all orientations 0 of E with
property (*) correspond to a proper circular arc representation of G
as defined in the proof of Theorem 5.6 (see Figure 5.7). The following
theorem characterizes those orientations which do. A Hamiltonian

path (or circuit) in a graph (V, E) 1is one which contains all the

vertices of V.

Theorem 5.7

Let G = (V, E) be a connected graph and let 0 be an orientation of
E. Then G has a proper circular arc representation to which the
ordering 0 correspondsiff (V, 0) contains a Hamiltonian path or
circuit P = [vy,..os vn) in which, for al1 i, V; = {veV: v,v e 0}

consists of consecutive members of P, and for which lvil < lvi*]l +1,

where i is given modulo n if P is a circuit.




hd e
B o ey

G=(V, E) (v, 0,)
\')
1
A
1 A,
A
Ay 3
v
3
(v, 0,)

Figure 5.7: An example for Theorem 5.7. The graph (V, 0,) has
no corresponding representation. The graph (V, 02) has the colre
sponding representation in the lower right figure®

Proof: (=>) Let {A],..., An} be a representation of G to which 0
corresponds and let Ai have counterclockwise endpoint 2y If
[z], Lysenes zn] is the clockwise order of the endpoints of the Ay
then it is easy to see that P = [Vl""’ vn] (or some cyclic
permutation of this) is the desired path or circuit.

(<=) We construct the desired representation as follows. We

consider an n-hour clock and initially represent v; by the clockwise
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arc A, starting at i o'clock and ending at i + |vi{ o'clock.
However, some arcs may have the same clockwise endpoint. If

(AL Ak+1”"’ Ass) (the indices being given modulo n) all end at

p o'clock, then we replace Ak+i by the clockwise arc Ai+i which

starts at k+i o'clock and ends at p + E%T o'clock. The set

{A}s .. AA} is the desired representation. [J




CHAPTER 6: ENUMERATION OF CHRONOLOGICAL ORDERINGS

The preceding chapters have described various ways of determiniag
whether an undirected graph has a representation (or chronological
ordering) which satisfies certain restrictions. But in very few cases
were we also able to determine how many chronological orderings satisfy
those restrictions. The following problem is the main topic of this
chapter. We remark here that our discussion will be mainly expository

in nature and will contain no major new results.

Problem 6.1
Instance: Interval graph G.

Question: How many chronological orderings does G have?

Fred Roberts [27, pp. 36-37; 26, pp. 118-122] discusses this
question and notes that it was only recently determined how many
chronological orderings a graph G has that differ in the partial

order they induce on G°. This number can be counted using the tools

of Booth and Lueker [5; 6] or Golumbic [12; 13]. The following i

|
|

discussion gives a more complete answer to Problem 6.1, but in a some-
what unsatisfactory way.

Let M be a maximal clique-vertex incidence matrix of G in
consecutive ones form. As discussed in the introduction, we can
easily construct a representation of G from M. (If the first 1 in
column i 1s in the a}-th row and the last 1 is in the b,-th row of
M, then we represent vertex v, by I1 = [ai. bi]') Note however

that not all endpoints will be distinct. Nevertheless, we can stretch
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each interval a certain amount to make them distinct, without changing
the intersection properties of the intervals. To determine how many ;
different ways we can do this, we let

V:(i) [resp. Vr(i)] = {vj eV: the right [resp. left]

— e——

endpoint of Ij is equal to ).

(See Figure 6.1.) We can arbitrarily linearly order the elements in

each Vg(i) and then stretch the right ends of each interval whose

vertex is in Vz(i) so that they are ordered along the line in this
way. For each Vg(i), there are |V2(i)l! ways of doing this. A
similar thing can be done for all Vr(i). Each resulting representa-
tion belongs to a different chronological ordering of G. Thus
starting from the matrix M, we can construct representations

corresponding to
m
M, . .
_n](lVRh)l!)(IVf(r)l!)
'|=

chronological orderings of G, where m is the number of maximal
cliques in G.

Furthermore, we can repeat this procedure for every consecutive
ones form of the maximal clique-vertex incidence matrix. It is not
hard to show that all the chronological orderings represented by
modifylng one consecutive ones form of the matrix will be distinct from
those formed by modifying another consecutive ones form of the matrix,

and further, that all possible chronological orderings of G will arise

in one of these situations. Thus we have the following:
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G The vertices of the
maximal cliques:

A: {v1, v2}
B: {vz, V3 v4}

The matrix M:

V-I V2 V3 V4 V5

11000
BIO 1T 1 1 0
01 0 11
Representation derived from M: V: and VE :
M _ M _
_ . M i M _
I] = E: "l% VR(Z) = {V3} VL(Z) = {anV3}
1, =1[1,3 M _ M _
3 = ’
I4 = [2,3] —_—
I = [3,3] y

New representation with the endpoints ordered as written in VR and VL

1 2 3

————

Figure 6.1: An example for Proposition 6.1.
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Proposition 6.2

Let G = (V, E) be an interval graph and let {(M(1), M(2),..., M(2)}
be the set of consecutive ones forms of the maximal clique-vertex
incidence matrix of G. If m is the number of maximal cliques of G,

then the number of chonological orderings of G is

£ m
M{k),. M .
Ion WGy Ry,
k=1 i=1
We can state this another way. Let I(M) be the set of all

chronological orderings of G for which the matrix is of the form M.

Then

m
LTS VROt 1

and the number of chronological orderings of G 1is equal to J|I(M)|,
the sum being over all consecutive ones forms M of the maximal
clique-vertex incidence matrix. In the notation of Proposition 6.2,
this is f |7(M(k))}. 1In other words, the set {M(1),..., M(1)}
partitionz-lhe set of chronological orderings of G dinto I(M1)+ ...
+ I(M(z2)).

Each consecutive ones form of the matrix corresponds to exactly
one transitive orientation of Gc, so we can use these orientations
to partition the set of chronological orderings of G and we obtain
the same result. Furthermore, with a 1ittle reflection, it can be

seen that each VR(i) and VL(i) corresponds to exactly one of the

vertex-disjoint cliques of (Pn, Pn x Pn\TT) as described in Lemma




95

2.4.2 in Chapter 2. (The particular transitive orientation of G°
chosen in Algorithm 2.3 forces the orientation of all the edges in T'.
The remaining choices are exactly those described above.)

Thus for each consecutive ones form M of the matrix for G (or
for each transitive orientation of Gc), it is easy to count the number
of chronological orderings which arise. Furthermore, by Booth and
Lueker [6, pp. 367-372] (or Golumbic [13, pp. 73-78]), it is easy to
count how many consecutive ones forms G's matrix has (or how many
transitive orientations G has). Unfortunately, these do not combine
to give us an efficient way of determining the total number of
chronological orderings of G, because the consecutive ones forms
may have varying numbers of associated chronological orderings. That
is, [I(M(i))| must be computed individually for each i. Since the
number of consecutive ones forms of the matrix of G can easily be of
size exponential in |V|, this does not lead to a polynomial-time
algorithm for determining the total.

The method of counting used in Chapter 4 does not seem to help
here either. We are able to determine the number of chronological
orderings, given which edges indicate inclusion, but, of course, there
are an exponential number of ways we can choose a subset of the
edges to indicate inclusion.

It is possible that Problem 6.1 is #P-complete (for definitions
and some results in this area, see Garey and Johnson [10], or Valiant

[35]), but the author has not been able to prove or disprove this

conjecture.
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CHAPTER 7: SPECIAL REPRESENTATIONS

7.1 Representations containing Given Points

Once again, let us return to our example from archaeglogy.
Suppose that, due to the availability of additional information, it
could be precisely determined when some of the graves were dug. Then

it seems reasonable that the points in time at which the graves had

S e

e

been dug are contained in all the intervals related to the artifacts

found in those graves. This leads to several interesting questions i

concerning interval graphs,

Problem 7.1

Instance: Graph G = (V, E), a set of real numbers {p]. Poseses pm}
for which Py <Py <"t <Py and a collection
{V],--. Vm} of subsets of V.

Question: Does G have an interval representation {I],.., In}
such that, for i =1,..,m, P; € VeV Ij?

j i

Theorem 7.2

G has a representation as desired in Problem 7.1 iff the following

are true:
(a) C;, fis not an induced subgraph of G,
(b) for k =1,..., m, the subgraph of G induced by V,  1is

a clique,

(c) G has a transitive orientation TC such that

{viv‘j € £C: Vi € Vk. vjevl. for some k < &} € Tc.




e g i

i esitesy ok com e e
il L < A, v v,

97

Prcof: The necessity of (a) and (b) is evident. If G has the

desired representation, then we can give G° the transitive orientation

T¢ defined by
c

. c
furthermore, if v; € Vk. vj € Vg, vivj e E° and k < &, then

I. < 1. since Pp < Pys Py € Ii' Py € IJ and Ii n IJ = (. Thus

To prove sufficiency, we note that conditions {a) and (c) imply,
by means of Theorem 1.3, that G 1is an interval graph with a
representation I' = {Ij, Ié,..., Ié} of closed intervals such that
vivs e TO <= If < I3, Let 1j=[a;, b3 for j=1,...,n. without
loss of generality, I' e I(G), i.e., A= {aJ, bj: j=1,..., n}
is a set of 2n distinct real numbers.

Let I'(V,) denote the set {13: vy € Vi }. Because each V,

generates a clique, Helly's Theorem (see Danzer, Grunbaum, and Klee

[7]) states that n I'(vk) #9. Let « denote the left endpoint of
a I'(Vk) and let

€ = min {{x~y[: x, yeA and x #y} > 0.

That is, € 1is the distance between the two closest members of A.
We now define a set of points {py,..., py} from which we will
derive the desired representation of G. Let p; = w;. For 1<icsm,

inductively define
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p; = max {mi. Piay ¥ e/m}.

Then pi < pé < e pé.

Lemma 7.2.1 For all i, p; en I'(v;).

Proof: It is true for i =1. Let 1 >1 and assume p% ¢n I'(Vi).

Then, by the definition of Wy s p; s p;§1 + €/m > w; and hence p%

is completely to the right (along the real line) of some Ij € I'(Vi),

i.e., 13 < {p%}.

Since pi Wy s there exists some k > 0 such that

p%-] + E/m = s = pi'k + kE/m = wi_k + kE/m.

]
Pj

Now, by the definition of ¢, wy_y = max {xeh: x < p%} and so

bj <wp g But Wk is the Jeft endpoint of some interval I e
I'(vi_k), which means that 13 < I;. But this contradicts the fact
that vy e Vi, Ve Vi o Vv e EC and 1> -k, which implies
that v v, e TC by property (c), and hence I; < 13. Therefore,

sJ

p; en I'(Vi) and the lemma is proved.

We can now form the desired representation as follows (see Figure
7.1). Translate and dilate that part of each interval in 1' between
p; and p:

i+l
affinely transform [p:, p;+1] onto [pi. pi+1]). for all 1. The

so that it stretches from p, to p,,, (i.e.,

resulting representation {I,..., I} has the desired property. 0
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An orientation TS of Gc

V2

1 = [0,2] Ip = L1.4] 14 = [3,5)
0 pis1 py=4r3 2 p3=3 4 5
{ \ \
! \ \
” \ \
{ \ ‘\.
.l \‘ p3=
4 py=5 6 P, 8 9 9510 M 12
I] = [4,8] 12 = [5,104] 13 = [9%,11%]

Figure 7.1: An example for Theorem 7.2.




100

Corollary 7.3

G has a representation as desired in Problem 7.1 with the added
property that no interval in the representation is properly contained
in another iff the conditions in Theorem 7.2 hold and K.l 3 (see

Figure 1.4) is not an induced subgraph of G.

Sketch of proof: If K] 3 is not an induced subgraph of G, then

the initial representation {Ii,..., IA} of G can easily be modified
(by stretching some endpoints if necessary) so that there is no proper
containment between any two intervals. The rest of the proof then

follows as in Theorem 7.2. J

Notice that it is possible for intervals other than those in
I(Vi) to contain P The following theorem shows that we can also
determine whether G has a representation in which those and only

those intervals of I(Vi) contain p,.

Problem 7.4

Instance: Graph G = (V, E), a set of real numbers {pys--es Pnl  for
which Py < Pp < *t < Pps and a collection {v]...., V.
of subsets of V.

Question: Does G have a representation {11...., ln} in which

Py € Ij <> vy e Vi?
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Define G'=(V + {p;: i=1J,...,m}, E+ Ep) where xy, yx e Ep
iff, for some i, x = Pj and y ¢ Vi‘ That is, we enlarge G by
adding m new vertices corresponding to the points {p]....,pm}. and

we connect each new vertex Py with the vertices in vi.

Theorem 7.5

G has a representation as desired in Problem 7.4 iff the following
are true:
(a) C, 1s not an induced subgraph of G',
(b) For all k, the subgraph of G induced by Vk is a clique,
and

(c) (G')c has a transitive orientation T¢ such that

{pipj: i<jle 1°.

Proof: 1If Problem 7.4 has a solution in which G 1is represented by
{11,..., In}. then G' is represented by the set {I],.... In’ {pl},
cees {pm}}, where vertex Py is represented by the real number Ps
(an interval of length 0). Therefore G' 1is an interval graph and
so, by Theorem 1.3, conditions (a) and (c¢) hold. Condition (b) is
obvious.

Conversely, suppose conditions (a), (b), (c) are true. Then G'
is an interval graph. In the representation I of G' constructed
by means of Gilmore and Hoffman's procedure [11] using Tc. each

vertex P is represented by a point p;, which is contained in

exactly the intervals in I(Vi). If we now affinely transform each
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interval [pg, p%+1] onto the interval [pi, pi+]]. we obtain the

desired representation. [J

Corollary 7.6

G has a representation as desired in Problem 7.4 with the added
property that no interval representing a vertex of G 1is properly
contained in another iff the conditions of Theorem 7.5 are satisfied

and K] 3 is not an induced subgraph of G.

Proof: The proof is similar to the proof of Corollary 7.3. []

Using the algorithm described in Chapter 4 for extending the
oriented edges of a mixed graph to a transitive orientation of the
whole graph (Problem 4.11), it is easy to construct an algorithm of
complexity O(IVI3 + m3) which solves Problems 7.1 and 7.4. The task
of producing a detailed algorithm is left as an exercise for the

reader.

7.2 A Class of Graphs of Interval Count 2

In the preceding section, we characterized those graphs which
have a proper interval representation in which certain intervals
contain specified points. These results cannot easily be extended to
the case in which we desire G to have a unit interval representation,
because in this case, the distances between the p{s became important,

a factor we were able to ignore completely until now.

In this section, we characterize those graphs which have

it
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representations containing only points and unit intervals. Here we
do not care which points on the line they are. However, a better
framework for Theorem 7.7 below is the subject of interval counts.
Given a finite set J of intervals of the line, let IC(J) be
the number of different size intervals in J. For an interval graph

G, define the interval count of G

IC(G) = min {IC(J): J 1is a representation of G}.

Thus IC(G) =1 iff G dis a unit interval graph. Leibowitz [23)]
has proved some results about interval counts. She showed that for
any interval graph G = (V, E), if G\ x (the subgraph of G induced
by VA\{x}) has interval count 1, then IC(G) s 2. She alsoc described
some other classes of graphs with interval count 2.

Theorem 7.7 presents another class. It characterizes those
graphs of interval count 2 or less for which one of the two lengths of
the intervals is 0.

We give a few more definitions, using the notation of Roberts
[23, p. 140] and Scott and Suppes [31, p. 118]. Define an equivalence
relation EQ on the vertices V of a graph G = (V, E) by defining
xEQy iff N(x) = N(y). Thus two vertices are equivalent iff they are
adjacent to exactly the same vertices in V (including themselves).
Let the reduced graph G* of G be the graph obtained by cancelling
this equivalence relation, i.e., the vertices of G* are equivalence
classes of vertices of G and two classes are adjacent if adjacency

holds between the representatives from the two classes.
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In Theorem 7.7, it suffices to restrict our attention to reduced

graphs, because if two vertices are equivalent, they can be represented
by the same interval.

Call a vertex v a simplicial vertex if N(v) generates a
clique in G. Also, for Sc V, Tlet E(S) = {xyeE: xeS or yeS}.

Theorem 7.7

Let G = (V, E) be a reduced graph. Then G has a representation in

which all intervals are closed and of length 1 or 0 (i.e., are unit
intervals or points) iff E\E(S) and E® have orientations 0 and
F, respectively, so that O+F is strongly transitive, where S is

the set of simplicial vertices of V.

Proof: Suppose G has such a representation. Clearly those vertices
represented by points must be in S. Conversely, if any vertex seS
is represented by a unit interval, note that, since vieN(s)Ii £0,
we obtain an equally valid representation by G by representing s
by any one of the points in viegzl)li' Thus we may assume that the
set of vertices represented by points is exactly S.

It is not hard to see that all the unit intervals can be trans-
lated, if necessary, so that all endpoints are distinct, without
changing the intersection properties of the intervals. Furthermore,
each point that represents a vertex in S can be lengthened slightly
to form an interval properly contained in the unit intervals with
which it intersects, so that there are 2n distinct endpoints in the

representation. In this way , we obtain a representation of G in




A e

105

1(G) whose associated tournament (V, C+0+F) satisfies the condition

that xy ¢ C iff xy ¢ E and xeS. Thus by Theorem 4.5, we have

proven the necessity of the existence of the orientations 0 and F.
Conversely, suppose E\E(S) and ES have orientations O and

F with the properties described. Then by Theorem 4.5, G has a

representation I = {I],.., I} e 1(G) such that Ii c Ij iff

v;v: e E and v, e S. (That is, we are defining C = {Vivj: ViV e E

J
and v. e S} for use in Theorem 4.5. It is clear that C%c C and

i
xy € C => N(x) < N(y) since G 1is reduced and since S 1is the set
of simplicial vertices of G.) Now, since all the neighbors of

vy € S are adjacent, no intersections are created or obliterated if
Ii is shrunk to a point for each vy € S. A1l that remains is to
expand or shrink each interval that is not a point into a unit
interval. This can be done without changing any intersections because
no such interval is properly contained in another. The task of

checking all the details is left as an exercise for the reader. []

We remark that this can be checked algorithmically in 0(|V|3)

steps using the methods of Chapter 4.
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CHAPTER 8: INTERVAL EDGE-GRAPHS

In this chapter and Chapter 9, the elements of E will be
unordered pairs {x, y} of distinct vertices. We will still call the
elements of E edges, which hopefully will not cause any confusion.
A1l graphs are undirected and there are no loops or multiple edges.

let G = (V, E) be a graph. We construct a new graph G' =
(E, F) called the edge-graph (or line-graph) of G by letting E be
the set of vertices of G' and letting F be the set of all unordered

pairs of (distinct) edges of G which have a comon endpoint (see

Figure 8.1).

€
G= (v, E) G' = (E, F)

Figure 8.1: A graph and its edge-graph.

The following theorem characterizes those graphs whose edge-graphs
are interval graphs. Given a graph G = (V, E), define a simple
circuit of G to be a sequence [v‘. Voreees vm] of distinct vertices
with m 2 3, such that {Vi’ v1+]} et for i=1,...,m1 and
{Vys 4} ¢ E. A simple circuit [v],..., vm] is called long if m2 4

A cactus is a graph with no long simple circuits.
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Theorem 8.1
Let G' = (E, F) be the edge-graph of G = (V, E). The following are
equivalent:
(a) G' 1is an interval graph,
(b) G' 1s a unit interval graph,
(c) G 1is a cactus which does not contain I nor v, (see
Figure 1.1) as (not necessarily induced) subgraphs,
(d) G 1is a cactus in which each component C of G has a
chordless path P with the property that, for each vertex
v in C but not in P, ON(v) consists of exactly one

vertex of P or exactly two adjacent vertices of P.
Before we prove this, we need a lemma.

Lerma 8.1.1 K] 3 is not an induced subgraph of any edge-graph.

Proof of Lemma: Suppose an edge-graph G' = (£, F) of a graph

G = (V, E}) has such a subgraph with the "center" vertex labelled v
and the other three vertices labelled Vi» Vps V3 Then v must be
an edge of G which has a comon vertex with three other edges in E,
but none of them has a common vertex with each other. Since v has

only two endpoints, this cannot happen.

Proof of Theorem 8.1: (a) <=>(b) By Lemma 8.1.1 above and Theorem 1.4,

(b)=>(c) If [v],..., vm], m=2 4, dis a long simple circuit

in G, then [{v]. vz). {vor val, L, v v]}] is a chordless cycle
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in G', contradicting the fact that G' is an interval graph.
Thus G 1is a cactus.

If G contains I, then G' must contain IV2 as an induced
subgraph since IV2 is the edge-graph of T. This contradicts Theorem
1.4. If G contains IV,, then G' must contain vy (see Figure 1.1)
as an induced subgraph since V] is the edge-graph of Ivz. This again
contradicts Theorem 1.4,

(c)=>(d) Without loss of generality, G is connected. The proof
will be by induction on n = |V|. Clearly, it is true for n = 1.
Consider the case where n > 1., Let x be any vertex in V such that
G\x (the subgraph of G induced by V\{x}) 1is connected. Then G«
has a path with the desired properties. Let P = [v],..., vk] be
the longest such path.

Note that x 1is adjacent to at most two vertices of P since

G 1is a cactus. We'll consider each possibility separately.

i vj of P. Without

loss of generality, i < j. If j # i+l, then

CASE 1: x is adjacent to two vertices v
[x, Vis Vigpoeees vj] isalong simple circuit. Thus x
must be adjacent to v, and Vidl for some 1i. The
proof will be complete when we show that x is not
adjacent to any other vertex of G. To show this, we
suppose not, i.e., we suppose some vertex y 1is adjacent

to x, with y ¢ P. Since G\« is connected, y 1is

adjacent to some Vi in P. Without loss of generality,

k s i. But then [x, Yy, Vio Vi1t Vi vi+]] is a
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long simple circuit, a contradiction.

x 1s adjacent to one vertex v; of P. If ONG(x)
{Vi}’ then P is the desired path in G. Thus assume ]
there exists a yeV\P such that {x, y} ¢ E. Since

G\x is connected, {y, vj} ¢ E for some vj e P. With-
out loss of generality, j < i. If j < i, then

y, Vi vj+],..., Vis x] 1is a long simple circuit.

Hence ONG(y) = {x, v;}, and ONG(x) = {y, vs} (1f

there were another vertex « adjacent to x, then
[x, ws Vis v] would be a long simple circuit.) If
3<ix< k-2, then {vi-2’ Viops Vio Visp Vieze %o 2 .
generates a graph which contains I. Thus i =71, 2,
k-1, or k. Without loss of generality, i =1 or 2

(see Figure 8.2).

Figure 8.2: Case 2.
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If i=1, then [y, Vis Vorenes Vk] is a longer path
than P with the desired properties, contradicting

the maximality of P in G\x. Thus i = 2. Now if
ON(v]) = {v,}, then P'= [x, Voseres vk] is the desired
path. Therefore, consider the case in which {z, v]} €
E for some vertex z ¢ Vo Then {z, v,} ¢ E by the
maximality of P 1in G\x. Now if k > 3, then

{x,y,z,ﬁ,vz,v3,v4} generates a graph which contains 1.

"

Hence it must be true that k=2 or 3. If k=2,

then [v], Vo x] 1is the desired path. If k = 3,

then we claim ON(vj3) = {vz}, in which case [v], Vs x]
is still the desired path. But if {w, v3} e £ for
some « # Vos then {Xx,y,Z,w, Vi vz,v3} generates a
graph which contains I. Thus ON(v3) = (vz} and

Case 2 is proved.

x is not adjacent to P. Then {x, y} ¢ E for some
vertex y¢ P, and {y, vi} ¢ E for some Vi€ P.
Furthermore, this is x's only neighbor since any other
neighbor would also have to be adjacent to P, producing
a long simple circuit. 5

Now y can also be adjacent to v (or equiva-

i+
lently Vi-l) in P. We'll consider these possibilities

separacely.
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Subcase 1: ON(y) = ({x, Vi Vi+]} (see Figure 8.3). If k 2 4, then

i=1 or k- herwi }
or k-1 because otherwise {X'y’vi-I’vi’vi#l’vi+2’

generates Ivz.

3
s
H
3

Figure 8.3: Case 3, Subcase 1.

Thus for any k 2 2, we can assume that 1 = 1. ODue to

the maximality of P in G\x and the fact that there

does not exist a vertex 2z (other than y) such that
ON(2) > {v], vz}, vy can have no neighbors other than

y and Vier- Now it is easy to see that P' = [x, y, Voo
Vaseees vk] is the desired path.

Subcase 2: ON(y) = {x, Vi} (see Figure 8.4),

Figure 8.4: Case 3, Subcase 2.
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If 3 <isk-2, then ({(x,y, Viezr Vil Vic Yiers Vieo!
generates I. Thus without loss of generality, i =1 or
2. If i=1, then [y, Vis Voseens vk] is a path that
contradicts the maximality of P in G\x. Thus i = 2.
If ON(v]) = {vz}. then [x, y, Voseees vk] is the
desired path. If {v], zZ} ¢ £ for some vertex 2 # Voo
then by the maximality of P, {VZ’ z} ¢ E. In this case,
it must be true that k < 3, since k > 3 implies

that {x, y, z, Vi» Voo V3o v4} generates a graph that
contains I. If k =2, then [x, y, Vos v]] is the
desired path. If k = 3, then vy can have no neighbors
besides v, (any such vertex w would cause

{Xs ¥» 2, w, Vs V5, V5} to generate a graph containing
I). Thus [x, y, Voo v]] is the desired path. This

finishes Case 3 and the proof that (c)=>(d).

(d)=>(c) It is clear that there can be no such path P if G

contains [ or IVZ.

(c)=>(b) G' cannot contain K],3 as an induced subgraph by
Lemma 8.1.1. G' does not contain IV2 or v] as an induced subgraph
because, if so, then G contains I or IVZ' If G' contains III
with n 2 4, then G has a long simple circuit. ilence G' has no
induced subgraphs of the form IIIn, n 24, Thus by Theorem 1.4, G'

is a unit interval graph.

This completes the p. oof of the theorem. [J
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CHAPTER 9: SOME NP-COMPLETENESS RESULTS

In this chapter, we use the notation described in the first
paragraph of Chapter 8, i.e., E denotes a set of unordered pairs of
distinct vertices.

Fof all definitions and background material on NP-completeness,
the reader is referred to Garey and Johnson [10] or Aho et al. [1].

Recall that, according to Theorem 1.2, a graph is an interval
graph iff its maximal clique-vertex incidence matrix has the consecu-
tive ones property. Therefore, if we want to measure how "close" a
graph is to being an interval graph, one way is to measure how "close"
its maximal clique-vertex incidence matrix is to being a matrix with
the consecutive ones property. There are four measures of "closeness"
that are discussed here, each of which leads to an NP-complete
problem. This is also true when "consecutive ones property" is
replaced by “circular ones property". A matrix of 0's and 1's has

the circular ones property if the rows can be permuted, so that, when

the matrix is rolled into a cylinder that makes the first and last
rows adjacent, all the 1 entries are consecutive in each column.
This is equivalent to requiring that there exist a permutation of the
rows of the matrix so that all the 1 entries or all the O entries are
consecutive in each column. For related NP-complete problems, see
Garey and Johnson [10, pp. 229-230].

The four measures of closeness are:
(1) The minimum number of 1 entries that need to be changed to 0's

to give the matrix the consecutive ones property.

(2) The minimum number of 0 entries that need to be changed to 1's
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to give the natrix the consecutive ones property.

(3) The minimum number of rows that need to be removed so that the

remaining matrix has the consecutive ones property.

(4) The minimum number of columns that need to be removed so that

the remaining matrix has the consecutive ones property.

Measure (1) corresponds to the following problem:

Consecutive Ones Matrix Diminution (COMD)

Instance: An mxn matrix M of 0's and 1's and a non-negative

integer K.

Question: Is there a matrix M', obtained from M by changing K
or fewer 1 entries to 0's, such that M' has the

consecutive ones property?

Theorem 9.1

COMD is NP-complete.

Proof: A proof requires showing that COMD is in NP and that there is

an NP-complete problem which is polynomially transformable into COMD.

It is easy to see that COMD is in NP because, as was previously
mentioned, there is a linear-time algorithm for checking for the
consecutive ones property.

The remainder of this proof shows that "Hamiltonian Path

Completion" (number [GT34] 1in Garey and Johnson's book [10]), which

is NP-complete, is polynomially transformable into COMD.

R i it i
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Hamiltonian Path Completion (HPC)

Instance: Graph G = (V, E) and positive integer
L s IV].

Question: Is there a superset E' containing E
such that |E'\El < L and the graph
G' = (V, E') has a Hamiltonian path?

Given an instance of HPC, we construct the [V| x [E| vertex-edge

incidence matrix M of G, where M = (mij) is defined by

1 if vertex v; is an endpoint of edge ej

m--
H 0 otherwise.

Let K = |E| - |V|*+ L¥1. This matrix M and integer K specify an

instance of COMD (if |[V| > |E] + L+1, then there is clearly no

Hamiltonian path in any such G'). ]

Claim: The desired superset E' exists for the instance of HPC iff

the desired matrix M' exists for the instance of COMD. ;

Proof of Claim: If the minimum number of edges we need to add to G'

to give it a Hamiltonian path P is 2 <L, then G must already

have |{V] -2 - 1 of the edges connecting the vertices of the path P,
since the total number of such edges is |V] - 1. Now by changing one
1toa O in each of the |E|-|V| + 2+1 columns of M corresponding i
to the edges of E not connecting the vertices in P, we obtain a '

matrix M' with the consecutive ones property (we can permute the rows

of M' to correspond to the order of the vertices along P to get M' .
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into consecutive ones form).

Conversely, suppose that k < K 1is the minimum number of 1's
that can be changed to 0's in M to give M' the consecutive ones
property. Clearly we need to change at most one 1 in each column,
since a column contains only two 1's. Let F be the set of edges
corresponding to the columns of M 1in which no 1 was changed. It is
easy to see that (V, F) can have no vertex of degree 2 3 nor any
simple circuits. Thus it is possible to add |V]| - |[F| - 1 edges to
G to form a Hamiltonian path which uses all of the edges in F.
Hence the minimum number & of edges that need to be added to G so

that G' has a Hamiltonian path satisfies:

L s V] - |Ff -1
= |v] - |E] + k-1 (since [F| = |E] - k)
< V] - [E] +K-1
= |v] - JE| + (JE] - [v] +L#3) -1
= L.

This proves the claim and hence the theorem. [J

Corollary 9.2

Circular Ones Matrix Diminution is NP-complete.

Sketch of proof: We can prove that Hamiltonian Circuit Completion

(Gary and Johnson’s {GT34]) is polynomially transformable into it by

making minor modifications to the proof above.
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An alternate proof is obtained by noting that, by changing all
the 0's to 1's and 1's to 0's, we obtain a polynomfal trans-

formation of Circular Ones Matrix Augmentation (mentioned below) into

it‘ D

The corresponding problems of Consecutive Ones Matrix Augmentation
and Circular Ones Matrix Augmentation (Garey and Johnson's [SR16])
were proved to be NP-complete by Booth [4, pp. 106-108]. These
correspond to measure (2) of closeness.

The following problem corresponds to measure (3).

Maximum Row Consecutive Ones Matrix (MRCOM)

S it

Instance: An mxn matrix M of O0's and 1's and a positive integer
K <mnm.
Question: Does there exist a kxn submatrix M' of M with k 2K

such that M' has the consecutive ones property?

The statements of Garey and Johnson [10, p. 229] on this problem
are confusing because their definition of “consecutive ones property"
asks whether the columns can be permuted so that the 1's in each row
are consecutive. Problem [SR14] was not proved to be KP-complete by
Booth [4, p.111] as they describe it. Booth actually proved that
“Maximum Column Consecutive Ones Matrix" (the same problem as MRCOM
except that it asks for an mxk submatrix with the consecutive ones

property) is NP-complete. This corresponds to measure (4) of closeness.
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We now proceed to prove that MRCOM (or equivalently, [SR14] in

Garey and Johnson's book) is NP-complete.

Theorem 9.3
MRCOM is NP-complete.

Proof: It is clear that MRCOM is in NP. To finish the proof, we show
that the problem "Induced subgraph which contains only paths" (problem
[(GT21] in Garey and Johnson's book), which is NP-complete, is poly-

nomially transformable into MRCOM.

Induced subgraph which contains only paths (ISCOP)

Instance: Graph G = (V, £) and a positive integer
K< [VI.

Question: Is there a subset V' ¢ V with V'] 2K
such that the subgraph G' dinduced by V'
contains only paths, i.e., G' has no
vertices of degree > 2 and no simple

circuits?

Note: This property qualifies for property 1 in [GT21] as stated
in Garey and Johnson's book, because this problem is in NP, and this
property holds for arbitrarily large graphs, does not hold for all
graphs, and is hereditary.

Now, given an instance of ISCOP, we construct the vertex-edge
jncidence matrix M of G. Then K and M give us an {instance

of MRCOM.
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Claim: The desired subset exists for the instance of ISCOP if¢ the

desired submatrix exists for the instance of MRCOM.

Proof of Claim: Suppose there exists a subset V' as desired in

ISCOP. Let M' be the |V'| x |E| submatrix of M whose rows
correspond to the vertices in V'. Now rearrange the rows of M
that the vertices we encounter as we travel along the paths of G'

consecutive. This permutation puts M' into a consecutive ones form,

so M' must have the consecutive ones property.

Conversely, suppose that there exists a k x |E|

of M with k 2 K such that M' has the consecutive ones property.

submatrix ™'

Consider the subgraph G' of G induced by the vertices of V

corresponding to the rows of M', Since M' has the consecutive ones

property, it is easy to see that no vertex of G' can have degree

> 2, because the matrix

1 0 0
0 1 0
0 0 1
T 1 1

cannot be a submatrix of M'. G' cannot have any simple circuits for

a similar reason. Thus G' has only paths, which proves the claim

and also the theorem. [J

Corollary 9.4

Maximum Row Circular Ones Matrix is NP-complete.
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Sketch of proof: By minor modifications of the proof above, we can

show that the following NP-complete problem is polynomially transfor-
mable into it. This problem also corresponds to problem [GT21] in

Garey and Johnson's book. ?

Induced Subgraph with only paths or a Hamiltonian circuit

Instance: Graph G = (V, E) and a positive integer K < JVI.

Question: 1Is there a subset V' c V with V'] 2 K such

that the subgraph induced by V' has no vertex
of degree > 2 and no simple circuits except

possibly a Hamiltonian circuit?

This gives the desired result. [J

Corallary 9.5

The problems proven to be NP-complete in Theorems 9.1 and 9.3 and
Corollaries 9.2 and 9.4 remain NP-complete when restricted to matrices

with at most two 1 entries in each column.

Proof: This is clear from the proofs of the theorems. []




(1]

(2]

(3]

(4]

(5]

(6]

(7]

[8]

(9]

REFERENCES

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis

of Computer Algorithms (Addison-Wesley, Reading, Mass., 1974).

S. Benzer, The fine structure of the gene, Sci. Amer. 206 (1962)

70-84.

S. Benzer, On the topology of the genetic fine structure, Proc.

Nat. Acad. Sci. USA 45 (1959) 1607-1620.

K.S. Booth, PQ-tree algorithms, Ph.D. Thesis, University of
California, Berkeley, CA (1975).

K.S. Booth and G.S. Lueker, Linear algorithms to recognize
interval graphs and test for the consecutive ones property,

Proc. Seventh ACM Symp. Theory of Computing (1975), 255-265.

K.S. Booth and G.S. Lueker, Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree

algorithms, J. Computer Sys. Sci. 13 (1976) 335-379.

L. Danzer, B. Griinbaum, and V. Klee, Helly's theorem and its
relatives, Proc. Symposia in Pure Math., Vol. VII (Convexity)
(1963), 101-180.

J-C. Fournier, Une caractérization des graphes de cordes, C.R.

Acad. Sci. Papris 286A (1978) 811-813.

D.R. Fulkerson and 0.A. Gross, Incidence matrices and interval

graphs, Pacific J. Math. 15 (1965) 835-855.




[10]

(]

[12]

(13]

[14]

[15]

(16]

(17]

[18]

(19]

B A NSRS e S Ly e R S AP oo ot okl i - XN A o . 1o (o SR A kil e b rromiiia SIS ~ - & apiam (eieabiide

122

M.R. Garey and D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness (Freeman, San Francisco,

1979).

P.C. Gilmore and A.J. Hoffman, A characterization of comparability

graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548. 1

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs

(Academic Press, New York, 1980).

M.C. Golumbic, Comparability graphs and a new matroid, J. Comb.

Th. B22 (1937) 68-90,

M.C. Golumbic, The complexity of comparability graph recognition
and coloring, Computing 18 (1977) 199-208.

G. Hajos, Uber eine Art von Graphen, Int. Math. Nachr. 11 (1957)

Sondernummer 65.
F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).

H.A. Jung, Zy einem Satz von E.S. Wolk uber die Vergleichbarkeits-
graphen von ordnungstheoretischen Baumen, Fund. Math, 63 (1968)

217-219.

D.G. Kendall, Incidence matrices, interval graphs and seriation

in archaeology, Pacific J. Math. 28 (1969) 565-570.

D.G. Kendall, Some problems and methods in statistical archaeo-

logy, World Archaeology 1 (1969) 68-76.




[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

123

D. Ya. Kesel'man, A circuit-free orientation of the edges of

a graph, Cybernetics 14 (1978) 240-246.

D.E. Knuth, The Art of Computer Programming (Addison-Wesley,
Reading, Mass., 1968).

D.E. Knuth and J.L. Szwarcfiter, A structured program to
generate all topological sorting arrangements, Information

Processing Letters 2 (1974) 153-157.

R. Leibowitz, Interval counts and threshold graphs, Ph.D. Thesis,

Rutgers University, New Brunswick, NJ (1978).

C.G. Lekkerkerker and J.C. Boland, Representation of a finite
graph by a set of intervals on the real line, Fund. Math.

51 (1962) 45-64.

A. Pnueli, A. Lempel, and S. Even, Transitive orientation of
graphs and identification of permutation graphs, Can. J. Math.

23 (1971) 160-175.

F.S. Roberts, Discrete Mathematical Models, With Applications
to Social, Biological and Environmental Problems (Prentice-Hall,

Englewood Cliffs, N.J., 1976).

F.S. Roberts, Graph Theory and Its Applications to Problems of

Society, NFS-CBMS Monograph #29 (SIAM Publications, Philadelphia,
1978).




-

(28]

[29]

[30]

(31l

[32]

[33]

[34]

(35]

{36]

[37]

124

F.S. Roberts, Indifference graphs, in: F. Harary, ed., Proof
Techniques in Graph Theory (Academic Press, New York, 1969)

139-146.

F.S. Roberts, Representations of indifference relations, Ph.D.

Thesis, Stanford University, Stanford, CA (1968).

D.J. Rose, Triangulated graphs and the elimination process,

J. Math. Anal. Appl. 32 (1970) 597-609.

D. Scott and P. Suppes, Foundational aspects of theories of

measurement, J. Symbolic Logic 23 (1958) 113-128.

A.C. Tucker, An efficient test for circular-arc graphs, SIAM J.

Comput. 9 (1980) 1-24.

A.C. Tucker, Matrix characterizations of circular-arc graphs,

Pacific J. Math. 39 (1971) 535-545,

A.C. Tucker, Structure theorems for some circular-arc graphs,

Discrete Math. 7 (1974) 167-195.

L.G. Valiant, The complexity of enumeration and reliability

problems, SIAM J. Comput. 8 (1979) 410-421.

E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math.
Soc. 13 (1962) 789-795.

E.S. Wolk, A note on "The comparability graph of a tree", Proc.
Amer. Math. Soc. 16 (1965) 17-20.



VITA

Dale John Skrien was born to Vernon and Jennie Skrien on
March 11, 1952, in the city of International Falls, Minnesota. He
graduated from Falls High School in 1970. In 1974, he received the
Bachelor of Arts degree from Saint Olaf College in Northfield,

Minnesota, and, in 1979, received the Master of Science degree from

the University of Washington.

RTINS AR S gy N < e 0T

¥




